Characterizing Effects of Sphingosine-1-Phosphate Receptor 1 Activation in Subtypes of Central Amygdala Neurons and Effects of Prenatal Methadone Exposure on Motor Cortex Neurons in Mice

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-04
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2021
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide spectrum of biological processes including apoptosis, immune response and inflammation. S1P receptor (S1PR) ligands have been utilized as an effective immunosuppressant, treatment in multiple sclerosis and studied as a treatment for pain. The primary cellular response to S1P is thought to be elicited through S1PR type 1 (S1PR1). My first goal was to understand how S1PR1 signaling affects neuronal excitability in the central amygdala (CeA), a supraspinal node of the descending pain pathway. The CeA is made up of a heterogenous population of neurons which form complex local and long-range circuits. The central lateral amygdala (CeL) consists of two major populations of inhibitory neurons identified by expression of the peptides somatostatin (Sst) and protein kinase Cδ (PKCδ). Sst neurons have been shown to maintain control over local circuits within the CeL and play a critical role in pain modulation. I utilized transgenic breeding strategies to fluorescently label Sst-expressing CeL neurons for whole-cell electrophysiology in acute brain slice. This strategy allowed me to study the effects of S1PR1 agonist SEW2871 and S1PR1 antagonist NIBR on the cellular physiology of CeL Sst neurons. My findings reveal intrinsically distinct subtypes of CeL Sst neurons that are uniquely affected by S1PR1 activation, which may have implications for how S1P alters supraspinal pain pathways. My second goal was to assess the physiology of motor cortex neurons in mice exposed to prenatal methadone. Methadone is a synthetic μ-opioid agonist used for opioid maintenance therapy and chronic pain management. Methadone treatment for opioid use disorder in pregnant women can result in structural changes within the brain of their offspring causing and developmental delays to their children, including poorer motor performance. Using a mouse model of prenatal methadone exposure (PME), whole-cell electrophysiology, and analyses of cellular morphology, I elucidated the effects of PME on primary motor cortex (M1) output layer 5 (L5) neurons, which encompass the major cortical output pathway for motor control. My findings provide the first evidence that PME disrupts neuronal firing, subthreshold properties, and strength of local inputs onto M1 L5 neurons in prepubescent mice.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2023-05-05