Auto-Generating Models From Their Semantics and Constraints

If you need an accessible version of this item, please submit a remediation request.
Date
2013-08-20
Language
American English
Embargo Lift Date
Department
Degree
M.S.
Degree Year
2012
Department
Department of Computer and Information Science
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Domain-specific models powered using domain-specific modeling languages are traditionally created manually by modelers. There exist model intelligence techniques, such as constraint solvers and model guidance, which alleviate challenges associated with manually creating models, however parts of the modeling process are still manual. Moreover, state-of-the-art model intelligence techniques are---in essence---reactive (i.e., invoked by the modeler). This thesis therefore provides two contributions to model-driven engineering research using domain-specific modeling language (DSML). First, it discusses how DSML semantic and constraint can enable proactive modeling, which is a form of model intelligence that foresees model transformations, automatically executes these model transformations, and prompts the modeler for assistance when necessary. Secondly, this thesis shows how we integrated proactive modeling into the Generic Modeling environment (GME). Our experience using proactive modeling shows that it can reduce modeling effort by both automatically generating required model elements, and by guiding modelers to select what actions should be executed on the model.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}