Coating of Polyvinylchloride for Reduced Cell / Bacterial Adhesion and Antibacterial Properties

dc.contributor.advisorXie, Dong
dc.contributor.authorAlmousa, Rashed Abdulaziz R.
dc.contributor.otherNa, Sungsoo
dc.contributor.otherLi, Jiliang
dc.date.accessioned2019-04-30T15:21:54Z
dc.date.available2019-04-30T15:21:54Z
dc.date.issued2019-05
dc.degree.date2019en_US
dc.degree.disciplineBiomedical Engineering
dc.degree.grantorPurdue Universityen_US
dc.degree.levelM.S.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractA Polyvinylchloride surface was modified by coating a biocompatible, hydrophilic and antibacterial polymer by a mild surface modification method. The surface was first activated and then functionalized, followed by coating with polymer. The surface functionality was evaluated using cell adhesion, bacterial adhesion and bacterial viability for polymers with antibacterial properties. 3T3 mouse fibroblast cells were used for cell adhesion, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were used for bacterial adhesion in the first study, Pseudomonas aeruginosa and Staphylococcus aureus were used for bacterial adhesion and antibacterial activity in the second study. Chapter 2 reports how we synthesized, immobilized and evaluated a novel hydrophilic polymer with anti-fouling properties onto surface of polyvinylchloride via an effective and mild surface coating technique. The polyvinylchloride surface was first activated by azidation as well as amination, and then tethering a newly synthesized hydrophilic and biocompatible polyvinylpyrrolidone having pendent reactive succinimide functionality onto the surface. Results show that the coated hydrophilic polymer significantly reduced the 3T3 fibroblast cell adhesion as well as the adhesion of the three bacterial species. Chapter 3 reports how we prepared, immobilized and evaluated an antibacterial and anti-fouling polymer onto polyvinylchloride surface following an efficient and simple method of surface modification. The surface coated with a terpolymer constructed with N-vinylpyrrolidone, 3,4-Dichloro-5-hydroxy-2(5H)-furanone derivative and succinimide residue was evaluated with cell adhesion, bacterial adhesion and bacterial viability. Surface adhesion was evaluated with 3T3 mouse fibroblast cells and two bacterial species. Also, antibacterial activity was evaluated by bacterial viability assay with the two bacterial species. Results showed that the polymer-modified polyvinylchloride surface exhibited significantly decreased 3T3 fibroblast cell adhesion and bacterial adhesion. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting bacterial growth with bactericidal activity. Altogether, we have successfully modified the surface of polyvinylchloride using a novel efficient and mild surface coating technique. The first hydrophilic polymer-coated polyvinylchloride surface significantly reduced cell adhesion as well as adhesion of three bacterial species. The second hydrophilic and antibacterial polymer-coated polyvinylchloride surface demonstrated significant antibacterial functions by inhibiting bacterial growth and killing bacteria in addition to significantly reduced 3T3 fibroblasts and bacterial adhesions.en_US
dc.identifier.urihttps://hdl.handle.net/1805/19006
dc.identifier.urihttp://dx.doi.org/10.7912/C2/1369
dc.language.isoen_USen_US
dc.subjectPVCen_US
dc.subjectPolymeren_US
dc.subjectSurface modificationen_US
dc.titleCoating of Polyvinylchloride for Reduced Cell / Bacterial Adhesion and Antibacterial Propertiesen_US
dc.typeThesis
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ALMOUSA_E4.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: