Efficientnext: Efficientnet For Embedded Systems

dc.contributor.advisorEl-Sharkawy, Mohamed
dc.contributor.authorDeokar, Abhishek
dc.contributor.otherKing, Brian
dc.contributor.otherRizkalla, Maher
dc.date.accessioned2022-05-27T14:06:52Z
dc.date.available2022-05-27T14:06:52Z
dc.date.issued2022-05
dc.degree.date2022en_US
dc.degree.disciplineElectrical & Computer Engineeringen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelM.S.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractConvolutional Neural Networks have come a long way since AlexNet. Each year the limits of the state of the art are being pushed to new levels. EfficientNet pushed the performance metrics to a new high and EfficientNetV2 even more so. Even so, architectures for mobile applications can benefit from improved accuracy and reduced model footprint. The classic Inverted Residual block has been the foundation upon which most mobile networks seek to improve. EfficientNet architecture is built using the same Inverted Residual block. In this thesis we experiment with Harmonious Bottlenecks in place of the Inverted Residuals to observe a reduction in the number of parameters and improvement in accuracy. The designed network is then deployed on the NXP i.MX 8M Mini board for Image classification.en_US
dc.description.embargo2023-10-11
dc.identifier.urihttps://hdl.handle.net/1805/29173
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2923
dc.language.isoen_USen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConvolutional Neural Networksen_US
dc.subjectCoordinate Attentionen_US
dc.subjectAdaptive Sharpness Aware Minimizationen_US
dc.subjectHarmonious Bottlenecken_US
dc.subjectSandglass Bottlenecken_US
dc.subjectInverted Residualen_US
dc.subjectFused-MBConven_US
dc.subjectCIFAR-10en_US
dc.subjectNXP i.MX 8M Minien_US
dc.subjectGELUen_US
dc.subjectSwishen_US
dc.subjectReLU6en_US
dc.titleEfficientnext: Efficientnet For Embedded Systemsen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_Deokar_May_2022.pdf
Size:
4.26 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: