Lipidomic Dysregulation in Alzheimer's Disease: Relation to Genetics, Neuroimaging and Other Biomarkers

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-04
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2021
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Large-scale genome-wide association studies for Alzheimer’s disease (AD) have identified more than 20 risk loci and several pathways including lipid metabolism. Lipids are fundamental to cellular structure and organization, where they compose biological bilayer membranes surrounding the cell. In their structural role, lipids provide a scaffold for cell signaling, such as neurotransmission. There is a large body of evidence linking lipids and AD, yet the relationship between AD pathogenesis and lipid dyshomeostasis is not well understood. Here, we performed manual PubMed searches to identify the most studied lipid classes and risk genes in AD. We discussed pathological alterations of the key lipids and their potential contribution to the recent NIA-AA “A/T/N” framework. We also summarized what is known between the key lipids and etiological hypotheses of AD. Finally, we characterized relationship of the key lipids with AD genomic risk factors to identify possible downstream mechanisms of lipid dysfunction in AD. There is a large body of evidence linking lipids and AD, yet the relationship between AD pathogenesis and lipid dyshomeostasis is not well understood. In particular, we investigated the association between triglyceride (TG) species and AD. The overall goal was to test the hypothesis that TGs would associate with AD endophenotypes, based on their fatty acid composition. Diagnostic groups (cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD) differed on two principal components extracted from 84 serum TG levels. Fish oil-type and olive oil-type TGs were significantly lower in MCI and AD compared to CN. Next, association analysis of TG principal components with “A/T/N/V” (amyloid-β, tau, neurodegeneration, and cerebrovascular) biomarkers for AD showed that the fish oil-type and olive oil-type TGs were also significantly associated with atrophy on MRI. Finally, a mixed model regression analysis investigated the association between baseline TGs and longitudinal changes of AD endophenotypes to show that olive oil-type TGs predicted changes in AD brain atrophy. Our results indicate that a specific subcategory of TGs is associated with an early prodromal stage of cognitive impairment and early-stage biomarkers for AD, providing the foundation for future therapeutic development related to TG metabolism.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2023-05-05