Advancing Toxicology-Based Cancer Risk Assessment with Informatics

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2010-05-03T19:38:33Z
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2010
Department
School of Informatics
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Since exposure to carcinogens can occur in the environment from various point sources, cancer risk assessment attempts to define and limit potential exposure such that the risk of developing cancer is negligible. While cancer risk assessment is widely used with certain methodologies well accepted in the scientific literature and regulatory guidances, there are still gaps which increase uncertainties when assessing risk including: (1) mixtures of genotoxins, (2) genotoxic metabolites, and (3) nongenotoxic carcinogens. An in silico model was developed to predict the cancer risk of a genotoxin which improved methodology for a single compound and mixtures. Monte Carlo simulations performed with a carcinogenicity potency database to estimate the overall carcinogenic risk of a mixture of genotoxic compounds showed that structural similarity would not likely increase the overall cancer risk. A cancer risk model was developed for genotoxic metabolites using excretion material in both animals and humans to determine the probability not exceeding a 1 in 100,000 excess cancer risk. Two model nongenotoxic compounds (fenofibrate and methapyraline) were tested in short-term microarray studies to develop a framework for cancer risk assessment. It was determined that a threshold for potential key events could be derived using benchmark dose analysis in combination with well developed ontologies (Kegg/GO), which were at or below measured tumorigenic and precursor events. In conclusion, informatics was effective in advancing toxicology-based cancer risk assessment using databases and predictive techniques which fill critical gaps in its methodology.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}