Designing of Gold Nanoprism-Based Reversible and Ultra-sensitive Molecular Sensors

Date
2013-04-05
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Photoswitchable molecules have attracted a great deal of attention over the past few years in designing molecular machines. Among photoswitchable molecules, azobenzene is widely studied due to its transcis photoisomeration, which produces a simple structure and spectra, and is photo and electrochemically active. The localized surface plasmon resonance (LSPR) properties of the metal nanostructures in conjunction with the photswitching properties of the azobenzene molecules allow the nanoscale environment to be more controlled and to ultimately improve the sensing abilities of the metallic nanostructures. We have developed a method of constructing a self-assembled monolayer (SAM) of azobenzene-containing alkanethiol molecules on the surface of chemically synthesized gold nanoprisms as molecular sensor. The reversible photoswiching properties of azobenzene were studied by monitoring the LSPR peak shift of gold nanoprisms by absorption spectroscopy. It was found that the substratebound gold nanoprisms functionalized with azobenzene alkanethiol molecules resulted in a ~30 nm LSPR peak red shift. The photoswitching behavior of the azobenzene molecules attached to the prisms was monitored after cycling exposure to UV and visible light. A ~12 nm LSPR blue shift was observed as the light exposure was switched from visible to UV light due to the trans to cis isomeration of the azobenze. The LSPR peak shift was found to be reversible as the light source was switched back and forth several times from UV to visible light. The reversible photoswitching of azobenzene-functionalized gold nanoprisms demonstrates their potential as ultra-sensitive molecular sensors for a broad range of applications from nanoelectrochemical systems to medicine.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Joshi, Gayatri K. and Kimberly A. Smith. (2013, April 5). Designing of Gold Nanoprism-Based Reversible and Ultra-sensitive Molecular Sensors. Poster session presented at IUPUI Research Day 2013, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}