- Browse by Subject
Browsing by Subject "wireless sensor networks"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomography(IEEE, 2018) Li, Yimei; Liang, Yao; Computer and Information Science, School of ScienceData acquisition from multi-hop large-scale outdoor wireless sensor network (WSN) deployments for environmental monitoring is full of challenges. This is because of the severe resource constraints on tiny battery-operated motes (e.g., bandwidth, memory, power, and computing capacity), the data acquisition volume from large-scale WSNs, and the highly dynamic wireless link conditions in outdoor harsh communication environments. We present a novel compressed sensing approach, which can recover the sensing data at the sink with high fidelity when a very few data packets need to be collected, leading to a significant reduction of the network transmissions and thus an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is both efficient and simple to implement on the resource-constrained motes without motes' storing of any part of the random projection matrix, as opposed to other existing compressed sensing-based schemes. We further propose a systematic method via machine learning to find a suitable representation basis, for any given WSN deployment and data field, which is both sparse and incoherent with the random projection matrix in compressed sensing for data collection. We validate our approach and evaluate its performance using a real-world outdoor multihop WSN testbed deployment in situ. The results demonstrate that our approach significantly outperforms existing compressed sensing approaches by reducing data recovery errors by an order of magnitude for the entire WSN observation field while drastically reducing wireless communication costs at the same time.Item Critical-Path Aware Scheduling for Latency Efficient Broadcast in Duty-Cycled Wireless Sensor Networks(Hindawi, 2018) Le, Duc-Tai; Im, Giyeol; Le Duc, Thang; Zalyubovskiy, Vyacheslav V.; Kim, Dongsoo S.; Choo, Hyunseung; Electrical and Computer Engineering, School of Engineering and TechnologyMinimum latency scheduling has arisen as one of the most crucial problems for broadcasting in duty-cycled Wireless Sensor Networks (WSNs). Typical solutions for the broadcast scheduling iteratively search for nodes able to transmit a message simultaneously. Other nodes are prevented from transmissions to ensure that there is no collision in a network. Such collision-preventions result in extra delays for a broadcast and may increase overall latency if the delays occur along critical paths of the network. To facilitate the broadcast latency minimization, we propose a novel approach, critical-path aware scheduling (CAS), which schedules transmissions with a preference of nodes in critical paths of a duty-cycled WSN. This paper presents two schemes employing CAS which produce collision-free and collision-tolerant broadcast schedules, respectively. The collision-free CAS scheme guarantees an approximation ratio of in terms of latency, where denotes the maximum node degree in a network. By allowing collision at noncritical nodes, the collision-tolerant CAS scheme reduces up to 10.2 percent broadcast latency compared with the collision-free ones while requiring additional transmissions for the noncritical nodes experiencing collisions. Simulation results show that broadcast latencies of the two proposed schemes are significantly shorter than those of the existing methods.Item The design and implementation of mobile deluge on Android platform for wireless sensor network reprogramming(2017-11-28) Faruk, MD Omor; Liang, Yao; Tuceryan, Mihran; Mukhopadhyay, SnehasisWireless Sensor Networks (WSN) is being used in various applications including environmental monitoring, site inspection and military. WSN is a distributed network of sensor devices that can be used to monitor temperature, humidity, light and other important metrics. The software that runs on the sensor devices define how the device should operate. In real world WSN deployment, device software update is required to maintain optimal operation. In this thesis, we propose a novel idea of updating the software of the sensor nodes using a mobile device running on Android Operating System. Our implementation builds upon Mobile Deluge with few enhancement which is a method of re-programming WSN with laptop computer. We have evaluated our application performance by lab experiments and in real world deployments of WSN and found the application stable and battery efficient.Item Energy Efficient Multipath Ant Colony Based Routing Algorithm for Mobile Ad hoc Networks(Elsevier, 2021-03) Sharma, Arush; Kim, Dongsoo S.; Electrical and Computer Engineering, School of Engineering and TechnologyThis paper describes the novel wireless routing protocol made for mobile ad hoc networks or wireless sensor networks using the bio-inspired technique. Bio-inspired algorithms include the routing capabilities taken from the social behavior of ant colonies, bird flocking, honey bee dancing, etc and promises to be capable of catering to the challenges posed by wireless sensors. Some of the challenges of wireless sensor networks are limited bandwidth, limited battery life, low memory, etc. An energy-efficient multipath routing algorithm based on the foraging nature of ants is proposed including many meta-heuristic impact factors to provide good robust paths from source to destination to overcome the challenges faced by resource-constrained sensors. Analysis of individual impact factor is represented which justifies their importance in routing performance. The multi-path routing feature is claimed by showing energy analysis as well as statistical analysis in-depth to the readers. The proposed routing algorithm is analyzed by considering various performance metrics such as throughput, delay, packet loss, network lifetime, etc. Finally, the comparison is done against AODV routing protocol by considering performance metrics where the proposed routing algorithm shows a 49% improvement in network lifetime.Item An Internet-of-Things (IoT) system development and implementation for bathroom safety enhancement(Elsevier, 2016) Koo, Dan D.; Lee, John J.; Sebastiani, Aleksei; Kim, Jonghoon; Department of Engineering Technology, School of Engineering and TechnologyStatistics show that a bathroom is one of the most hazardous places especially for older people. Older people typically have greater difficulties with mobility and balance, making them more vulnerable to fall and slip injuries in a bathroom and causing serious health issues related to short and long-term well-being. Various components in a bathroom including shower, tub, floor, and toilet have been re-designed, and independently upgraded their ergonomics and safety aspects; however, the number of bathroom injuries remains consistently high in general. Internet-of-Things (IoT) is a new concept applicable to almost everywhere and man-made objects. Wireless sensors detect abnormalities and send data through the network. A large amount of data can be collected from multiple IoT systems and it can be utilized for a big data analysis. The big data may reveal a hidden positive outcome beyond the initially intended purposes. A few commercial IoT applications such as wearable health monitoring and intelligent transportation systems are available. Nevertheless, An IoT application for a bathroom is not currently known. Unlike other applications, bathrooms have some unique aspects such as privacy and wet environment. This paper presents a holistic conceptual approach of an Internet-of-Things (IoT) system development and implementation to enhance bathroom safety. The concept focuses on the application in a large nursing care facility as a pilot testing bed. Authors propose 1) sensor selection and application, 2) integration of a wireless sensor local network system, 3) design concept for IoT implementation, and 4) a big data analysis system model in this paper.Item Monitoring Routing Topology in Dynamic Wireless Sensor Network Systems(IEEE, 2015) Liu, Rui; Liang, Yao; Zhong, Xiaoyang; Department of Computer & Information Science, School of ScienceIn large-scale multi-hop wireless sensor networks (WSNs) for data collection, the ability of monitoring per-packet routing paths at the sink is essential in better understanding network dynamics, and improving routing protocols, topology control, energy conservation, anomaly detection, and load balance in WSN deployments. In this study, we consider this important problem under tremendous WSN routing dynamics, which cannot be addressed by previous methods based on a routing tree model. We formulate the WSN topology inference as a novel optimization problem, and devise efficient decoding algorithms to effectively recover WSN routing topology at the sink in real-time using a small fixed-size path measurement attached to each packet. Rigorous complexity analysis of the devised algorithms is given. Performance evaluation is conducted via extensive simulations. The results reveal that our approach significantly outperforms other state-of-the-art methods including MNT, Pathfinder, and CSPR. Furthermore, we validate our approach intensively with a real-world outdoor WSN deployment running collection tree protocol for environmental data collection.Item Robust Bio-Inspired Routing Protocol in MANETs Using Ant Approach(Springer, 2019) Sharma, Arush; Kim, Dongsoo S.; Electrical and Computer Engineering, School of Engineering and TechnologyThis paper discusses about developing a routing protocol for mobile ad-hoc networks in a bio-inspired manner. Algorithms inspired by collective behavior of social insect colonies, bird flocking, honey bee dancing, etc., promise to be capable of catering to the challenges faced by tiny wireless sensor networks. We propose an energy efficient multi-path routing algorithm based on foraging nature of ant colonies. This paper considers many meta-heuristic factors to provide good robust paths from source node to destination node in a hope to overcome the challenges posed by resource-constrained sensors. The performance of proposed ant colony routing algorithm is compared against well-known AODV routing protocol.Item Scalable Downward Routing for Wireless Sensor Networks Actuation(IEEE, 2019-10) Zhong, Xiaoyang; Liang, Yao; Computer and Information Science, School of ScienceIn this paper, we study the downward routing for network control/actuation in large-scale and heterogeneous wireless sensor networks (WSNs). We propose the opportunistic source routing (OSR), a scalable and reliable downward routing protocol for WSNs. OSR introduces opportunistic routing into traditional source routing based on the parent set of a node's upward routing in data collection, significantly addressing the drastic link dynamics in low-power and lossy WSNs. We devise a novel adaptive Bloom filter mechanism to effectively and efficiently encode the downward source-route in OSR, which enables a significant reduction of the length of source-route field in the packet header. OSR is scalable to very large-size WSN deployments, since each resource-constrained node in the network stores only the set of its direct children. We present an analytical scalability model and evaluate the performance of OSR via both the simulations and real-world testbed experiments, in comparison with the standard RPL (both storing mode and non-storing mode), ORPL, and the representative dissemination protocol Drip. Our results show that the OSR significantly outperforms RPL and ORPL in scalability and reliability. OSR also achieves significantly better energy efficiency compared with TinyRPL and Drip which are based on the same TinyOS platform as OSR implementation.Item Scalable Downward Routing for Wireless Sensor Networks and Internet of Things Actuation(IEEE, 2018-10) Zhong, Xiaoyang; Liang, Yao; Computer and Information Science, School of ScienceWe present the opportunistic Source Routing (OSR), a scalable and reliable downward routing protocol for large-scale and heterogeneous wireless sensor networks (WSNs) and Internet of Things IoT. We devise a novel adaptive Bloom filter mechanism to efficiently encode the downward source route in OSR, which significantly reduces the length of the source route field in the packet header. Moreover, each node in the network stores only the set of its direct children. Thus, OSR is scalable to very large-size WSN/IoT deployments. OSR introduces opportunistic routing into traditional source routing based on the parent set of a node's upward routing in data collection, significantly addressing the drastic link dynamics in low-power and lossy networks (LLNs). Our evaluation of OSR via both simulations and real-world testbed experiments demonstrates its merits in comparison with the state-of-the-art protocols.Item Scalable Downward Routing for Wireless Sensor Networks and Internet of Things Actuation(IEEE, 2018) Zhong, Xiaoyang; Liang, Yao; Computer and Information Science, School of ScienceWe present the opportunistic Source Routing (OSR), a scalable and reliable downward routing protocol for large-scale and heterogeneous wireless sensor networks (WSNs) and Internet of Things IoT. We devise a novel adaptive Bloom filter mechanism to efficiently encode the downward source route in OSR, which significantly reduces the length of the source route field in the packet header. Moreover, each node in the network stores only the set of its direct children. Thus, OSR is scalable to very large-size WSN/IoT deployments. OSR introduces opportunistic routing into traditional source routing based on the parent set of a node's upward routing in data collection, significantly addressing the drastic link dynamics in low-power and lossy networks (LLNs). Our evaluation of OSR via both simulations and real-world testbed experiments demonstrates its merits in comparison with the state-of-the-art protocols.