- Browse by Subject
Browsing by Subject "white matter hyperintensity"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Effects of Longitudinal White Matter Hyperintensity Change on Cognitive Decline and Cortical Thinning over Three Years(MDPI, 2020-08-17) Kim, Seung Joo; Lee, Dong Kyun; Jang, Young Kyoung; Jang, Hyemin; Kim, Si Eun; Cho, Soo Hyun; Kim, Jun Pyo; Jung, Young Hee; Kim, Eun-Joo; Na, Duk L.; Lee, Jong-Min; Seo, Sang Won; Kim, Hee Jin; Radiology and Imaging Sciences, School of MedicineWhite matter hyperintensity (WMH) has been recognised as a surrogate marker of small vessel disease and is associated with cognitive impairment. We investigated the dynamic change in WMH in patients with severe WMH at baseline, and the effects of longitudinal change of WMH volume on cognitive decline and cortical thinning. Eighty-seven patients with subcortical vascular mild cognitive impairment were prospectively recruited from a single referral centre. All of the patients were followed up with annual neuropsychological tests and 3T brain magnetic resonance imaging. The WMH volume was quantified using an automated method and the cortical thickness was measured using surface-based methods. Participants were classified into WMH progression and WMH regression groups based on the delta WMH volume between the baseline and the last follow-up. To investigate the effects of longitudinal change in WMH volume on cognitive decline and cortical thinning, a linear mixed effects model was used. Seventy patients showed WMH progression and 17 showed WMH regression over a three-year period. The WMH progression group showed more rapid cortical thinning in widespread regions compared with the WMH regression group. However, the rate of cognitive decline in language, visuospatial function, memory and executive function, and general cognitive function was not different between the two groups. The results of this study indicated that WMH volume changes are dynamic and WMH progression is associated with more rapid cortical thinning.Item Prevalence of Potentially Clinically Significant Magnetic Resonance Imaging Findings in Athletes with and without Sport-Related Concussion(Mary Ann Liebert, 2019-05-22) Klein, Andrew P.; Tetzlaff, Julie E.; Bonis, Joshua M.; Nelson, Lindsay D.; Mayer, Andrew R.; Huber, Daniel L.; Harezlak, Jaroslaw; Mathews, Vincent P.; Ulmer, John L.; Sinson, Grant P.; Nencka, Andrew S.; Koch, Kevin M.; Wu, Yu-Chien; Saykin, Andrew J.; DiFiori, John P.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; Duma, Stefan M.; Rowson, Steven; Brooks, Alison; Broglio, Steven P.; McAllister, Thomas; McCrea, Michael A.; Meier, Timothy B.; Radiology and Imaging Sciences, School of MedicinePrevious studies have shown that mild traumatic brain injury (mTBI) can cause abnormalities in clinically relevant magnetic resonance imaging (MRI) sequences. No large-scale study, however, has prospectively assessed this in athletes with sport-related concussion (SRC). The aim of the current study was to characterize and compare the prevalence of acute, trauma-related MRI findings and clinically significant, non-specific MRI findings in athletes with and without SRC. College and high-school athletes were prospectively enrolled and participated in scanning sessions between January 2015 through August 2017. Concussed contact sport athletes (n = 138; 14 female [F]; 19.5 ± 1.6 years) completed up to four scanning sessions after SRC. Non-concussed contact (n = 135; 15 F; 19.7 ± 1.6) and non-contact athletes (n = 96; 15 F; 20.0 ± 1.7) completed similar scanning sessions and served as controls. Board-certified neuroradiologists, blinded to SRC status, reviewed T1-weighted and T2-weighted fluid-attenuated inversion recovery and T2*-weighted and T2-weighted images for acute (i.e., injury-related) or non-acute findings that prompted recommendation for clinical follow-up. Concussed athletes were more likely to have MRI findings relative to contact (30.4% vs. 15.6%; odds ratio [OR] = 2.32; p = 0.01) and non-contact control athletes (19.8%; OR = 2.11; p = 0.04). Female athletes were more likely to have MRI findings than males (43.2% vs. 19.4%; OR = 2.62; p = 0.01). One athlete with SRC had an acute, injury-related finding; group differences were largely driven by increased rate of non-specific white matter hyperintensities in concussed athletes. This prospective, large-scale study demonstrates that <1% of SRCs are associated with acute injury findings on qualitative structural MRI, providing empirical support for clinical guidelines that do not recommend use of MRI after SRC.