- Browse by Subject
Browsing by Subject "wearable devices"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Blood Glucose Level Prediction as Time-Series Modeling using Sequence-to-Sequence Neural Networks(CEUR Workshop Proceedings, 2020-08) Bhimireddy, Ananth; Sinha, Priyanshu; Oluwalade, Bolu; Gichoya, Judy Wawira; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingThe management of blood glucose levels is critical in the care of Type 1 diabetes subjects. In extremes, high or low levels of blood glucose are fatal. To avoid such adverse events, there is the development and adoption of wearable technologies that continuously monitor blood glucose and administer insulin. This technology allows subjects to easily track their blood glucose levels with early intervention without the need for hospital visits. The data collected from these sensors is an excellent candidate for the application of machine learning algorithms to learn patterns and predict future values of blood glucose levels. In this study, we developed artificial neural network algorithms based on the OhioT1DM training dataset that contains data on 12 subjects. The dataset contains features such as subject identifiers, continuous glucose monitoring data obtained in 5 minutes intervals, insulin infusion rate, etc. We developed individual models, including LSTM, BiLSTM, Convolutional LSTMs, TCN, and sequence-to-sequence models. We also developed transfer learning models based on the most important features of the data, as identified by a gradient boosting algorithm. These models were evaluated on the OhioT1DM test dataset that contains 6 unique subject’s data. The model with the lowest RMSE values for the 30- and 60-minutes was selected as the best performing model. Our result shows that sequence-to-sequence BiLSTM performed better than the other models. This work demonstrates the potential of artificial neural networks algorithms in the management of Type 1 diabetes.Item Inferring Mobile Payment Passcodes Leveraging Wearable Devices(ACM, 2018-10) Wang, Chen; Liu, Jian; Guo, Xiaonan; Wang, Yan; Chen, Yingying; Computer and Information Science, School of ScienceMobile payment has drawn considerable attention due to its convenience of paying via personal mobile devices at anytime and anywhere, and passcodes (i.e., PINs) are the first choice of most consumers to authorize the payment. This work demonstrates a serious security breach and aims to raise the awareness of the public that the passcodes for authorizing transactions in mobile payments can be leaked by exploiting the embedded sensors in wearable devices (e.g., smartwatches). We present a passcode inference system, which examines to what extent the user's PIN during mobile payment could be revealed from a single wrist-worn wearable device under different input scenarios involving either two hands or a single hand. Extensive experiments with 15 volunteers demonstrate that an adversary is able to recover a user's PIN with high success rate within 5 tries under various input scenarios.Item When Your Wearables Become Your Fitness Mate(Elsevier, 2020-05) Guo, Xiaonan; Liu, Jian; Chen, Yingying; Computer Information and Graphics Technology, School of Engineering and TechnologyAcknowledging the powerful sensors on wearables and smartphones enabling various applications to improve users' life styles and qualities (e.g., sleep monitoring and running rhythm tracking), this paper takes one step forward developing FitCoach, a virtual fitness coach leveraging users' wearable mobile devices (including wrist-worn wearables and arm-mounted smartphones) to assess dynamic postures (movement patterns & positions) in workouts. FitCoach aims to help the user to achieve effective workout and prevent injury by dynamically depicting the short-term and long-term picture of a user's workout based on various sensors in wearable mobile devices. In particular, FitCoach recognizes different types of exercises and interprets fine-grained fitness data (i.e., motion strength and speed) to an easy-to-understand exercise review score, which provides a comprehensive workout performance evaluation and recommendation. Our system further enables contactless device control during workouts (e.g., gesture to pick up an incoming call) through distinguishing customized gestures from regular exercise movement. In addition, FitCoach has the ability to align the sensor readings from wearable devices to the human coordinate system, ensuring the accuracy and robustness of the system. Extensive experiments with over 5000 repetitions of 12 types of exercises involve 12 participants doing both anaerobic and aerobic exercises in indoors as well as outdoors. Our results demonstrate that FitCoach can provide meaningful review and recommendations to users by accurately measure their workout performance and achieve and accuracy for workout analysis and customized control gesture recognition, respectively.