- Browse by Subject
Browsing by Subject "wear"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Abrasive Resistant Coatings—A Review(MDPI, 2014-05-21) Wu, Linmin; Guo, Xingye; Zhang, Jing; Mechanical Engineering, School of Engineering and TechnologyAbrasive resistant coatings have been widely used to reduce or eliminate wear, extending the lifetime of products. Abrasive resistant coatings can also be used in certain environments unsuitable for lubrications. Moreover, abrasive resistant coatings have been employed to strengthen mechanical properties, such as hardness and toughness. Given recently rapid development in abrasive resistant coatings, this paper provides a review of major types of abrasive coatings, their wearing mechanisms, preparation methods, and properties.Item Numerical simulation of aluminum extrusion using coated die(2014) Bakhtiani, Tushar; El-Mounayri, Hazim; Zhang, JingIn aluminium extrusion, the life of the die tooling components is mainly limited by wear and fatigue. Therefore reliable predictions of the amount of wear and its distribution in dies are important factors for the die design. In this study the stress location and wear depth of the tooling components were calculated using finite element models incorporating the Archards wear model. A comparative study was conducted on an extrusion die without coating and with a bilayer (TiCN + Al2O3) chemical vapor deposition (CVD) coating. Stress distribution and the amount of wear were calculated. The results generated from the simulation would help predict the service life of the components through optimizing coating thickness.Item Physicomechanical properties of a zinc-reinforced glass ionomer restorative material(2014) Al-Angari, Sarah S.; Hara, Anderson T.; Chu, Tien-Min; Platt, Jeffrey; Eckert, George; Cook, N. Blaine; Department of Restorative Dentistry, School of DentistryWe compared a zinc-reinforced glass ionomer restorative material (ChemFil Rock) with three commercially available glass ionomer cements (GICs), namely, Fuji IX GP Extra, Ketac Molar Quick Aplicap, and EQUIA Fil, with respect to fracture toughness, microhardness, roughness, and abrasive wear. Fracture toughness (KIC) was tested according to ISO 13586 (n = 10). Hardness, roughness, and abrasive wear were also tested (n = 9). Data were analyzed using the Wilcoxon rank-sum test with adjustment for multiple comparisons (α = 0.05). As compared with the other GICs ChemFil Rock exhibited a greater increase in surface roughness (P < 0.05) and lower microhardness (P < 0.01). The wear resistance of ChemFil Rock was comparable to that of the other GICs (P > 0.05). ChemFil Rock had significantly lower fracture toughness as compared with EQUIA Fil (P = 0.01) and significantly higher fracture toughness as compared with the other GICs (P < 0.02). In conclusion, as compared with the three other commercially available GICs, ChemFil Rock had intermediate fracture toughness, the lowest microhardness, and the greatest change in surface roughness.