- Browse by Subject
Browsing by Subject "wall shear stress"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Computational Fluid Dynamics for Modeling and Simulation of Intraocular Drug Delivery and Wall Shear Stress in Pulsatile Flow(2020-08) Abootorabi, Seyedalireza; Yu, Huidan; Nematollahi, Khosrow; Yokota, HirokiThe thesis includes two application studies of computational fluid dynamics. The first is new and efficient drug delivery to the posterior part of the eye, a growing health necessity worldwide. Current treatment of eye diseases, such as age-related macular degeneration (AMD), relies on repeated intravitreal injections of drug-containing solutions. Such a drug delivery has significant cant drawbacks, including short drug life, vital medical service, and high medical costs. In this study, we explore a new approach of controlled drug delivery by introducing unique porous implants. Computational modeling contains physiological and anatomical traits. We simulate the IgG1 Fab drug delivery to the posterior eye to evaluate the effectiveness of the porous implants to control the drug delivery. The computational model was validated by established computation results from independent studies and experimental data. Overall, the results indicate that therapeutic drug levels in the posterior eye are sustained for eight weeks, similar to those performed with intravitreal injection of the same drug. We evaluate the effects of the porous implant on the time evaluation of the drug concentrations in the sclera, choroid, and retina layers of the eye. Subsequent simulations were carried out with varying porosity values of a porous episcleral implant. Our computational results reveal that the time evolution of drug concentration is distinctively correlated to drug source location and pore size. The response of this porous implant for controlled drug delivery applications was examined. A correlation between porosity and fluid properties for the porous implants was revealed in this study. The second application lays in the computational modeling of the oscillatingItem Modeling and simulation of interstitial fluid flow around an osteocyte in a lacuno-canalicular network(AIP, 2022-04-01) Zhu (祝罗丁), Luoding; Barber, Jared; Zigon , Robert; Na (나성수), Sungsoo; Yokota (横田博樹), Hiroki; Mathematical Sciences, School of ScienceExperiments have shown that external mechanical loading plays an important role in bone development and remodeling. In fact, recent research has provided evidence that osteocytes can sense such loading and respond by releasing biochemical signals (mechanotransduction, MT) that initiate bone degradation or growth. Many aspects on MT remain unclear, especially at the cellular level. Because of the extreme hardness of the bone matrix and complexity of the microenvironment that an osteocyte lives in, in vivo studies are difficult; in contrast, modeling and simulation are viable approaches. Although many computational studies have been carried out, the complex geometry that can involve 60+ irregular canaliculi is often simplified to a select few straight tubes or channels. In addition, the pericellular matrix (PCM) is usually not considered. To better understand the effects of these frequently neglected aspects, we use the lattice Boltzmann equations to model the fluid flow over an osteocyte in a lacuno-canalicular network in two dimensions. We focus on the influences of the number/geometry of the canaliculi and the effects of the PCM on the fluid wall shear stress (WSS) and normal stress (WNS) on an osteocyte surface. We consider 16, 32, and 64 canaliculi using one randomly generated geometry for each of the 16 and 32 canaliculi cases and three geometries for the 64 canaliculi case. We also consider 0%, 5%, 10%, 20%, and 40% pericellular matrix density. Numerical results on the WSS and WNS distributions and on the velocity field are visualized, compared, and analyzed. Our major results are as follows: (1) the fluid flow generates significantly greater force on the surface of the osteocyte if the model includes the pericellular matrix (PCM); (2) in the absence of PCM, the average magnitudes of the stresses on the osteocyte surface are not significantly altered by the number and geometry of the canaliculi despite some quantitative influence of the latter on overall variation and distribution of those stresses; and (3) the dimensionless stress (stress after non-dimensionalization) on the osteocyte surface scales approximately as the reciprocal of the Reynolds number and increasing PCM density in the canaliculi reduces the range of Reynolds number values for which the scaling law holds.