ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "two-stage nonparametric"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    TSNP: A two-stage nonparametric phase I/II clinical trial design for immunotherapy
    (Wiley, 2021-03) Han, Yan; Liu, Hao; Cao, Sha; Zhang, Chi; Zang, Yong; Biostatistics, School of Public Health
    We develop a transparent and efficient two-stage nonparametric (TSNP) phase I/II clinical trial design to identify the optimal biological dose (OBD) of immunotherapy. We propose a nonparametric approach to derive the closed-form estimates of the joint toxicity–efficacy response probabilities under the monotonic increasing constraint for the toxicity outcomes. These estimates are then used to measure the immunotherapy's toxicity–efficacy profiles at each dose and guide the dose finding. The first stage of the design aims to explore the toxicity profile. The second stage aims to find the OBD, which can achieve the optimal therapeutic effect by considering both the toxicity and efficacy outcomes through a utility function. The closed-form estimates and concise dose-finding algorithm make the TSNP design appealing in practice. The simulation results show that the TSNP design yields superior operating characteristics than the existing Bayesian parametric designs. User-friendly computational software is freely available to facilitate the application of the proposed design to real trials. We provide comprehensive illustrations and examples about implementing the proposed design with associated software.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University