- Browse by Subject
Browsing by Subject "transpiration"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Quantifying the Responses of Vegetation to Environmental Stresses(2022-09) Lanning, Matthew L.; Wang, Lixin; Wang, Xianzhong; Novick, Kimberly Ann; Jacinthe, Pierre-André; Gilhooly, William P.I examined interactions between plants and the environment they live in along the soil-plant-atmospheric continuum and addressed the effects of drought and acid deposition on plant water use. Using a novel stable isotope technique, I showed that plant water source utilization can be modulated in some species based on the soil and atmospheric conditions they experience, whereas others only access a single subsurface water source. By modeling cuticular conductance in multiple plant species, I showed that the variability of cuticular conductance across species is largely related to the changes in leaf water potentials between pre-dawn and midday measurements collected in field studies. I also assessed the individual and combined effects of soil water stress and atmospheric water stress on plant productivity by developing a new methodology, which can be used across scales. In doing so, I found that in deciduous broad-leaf forests, periods of high vapor pressure deficit caused sufficient hydraulic stress to reduce plant productivity more than low soil water content alone, and often reduced productivity to levels equal to periods of both low soil water stress and high vapor pressure deficit. Utilizing historical data from a whole forest acidification experiment, I was able to link the stress of nutrient deficiencies caused by acid deposition (specifically calcium) to increases in plant water utilization. This was the first observation of such an effect at the ecosystem scale and could have significant implications for understanding water availability in the future. Finally, I assessed a common method for extracting cellulose from tree rings for isotope analyses, which is often used to determine the historical water use efficiency of plants. I was able to determine chemical alteration to the cellulose molecule using stable isotope measurements and spectroscopy. The chemical modification seems to be systemic and therefore could be addressed through mathematical corrections to existing data. Having accurate values of plant water use efficiency is extremely important for understanding how different stressors in the past changed the way plants used their water resources. My series of studies provide new insights and tools to evaluate the plant-environment interactions in current and future environments.Item Revisiting the contribution of transpiration to global terrestrial evapotranspiration(Wiley, 2017-03) Wei, Zhongwang; Yoshimura, Kei; Wang, Lixin; Miralles, Diego G.; Jasechko, Scott; Lee, Xuhui; Earth Science, School of ScienceEven though knowing the contributions of transpiration (T), soil and open water evaporation (E), and interception (I) to terrestrial evapotranspiration (ET = T + E + I) is crucial for understanding the hydrological cycle and its connection to ecological processes, the fraction of T is unattainable by traditional measurement techniques over large scales. Previously reported global mean T/(E + T + I) from multiple independent sources, including satellite-based estimations, reanalysis, land surface models, and isotopic measurements, varies substantially from 24% to 90%. Here we develop a new ET partitioning algorithm, which combines global evapotranspiration estimates and relationships between leaf area index (LAI) and T/(E + T) for different vegetation types, to upscale a wide range of published site-scale measurements. We show that transpiration accounts for about 57.2% (with standard deviation ± 6.8%) of global terrestrial ET. Our approach bridges the scale gap between site measurements and global model simulations,and can be simply implemented into current global climate models to improve biological CO2 flux simulations.Item Transpiration Dominates Ecosystem Water‐Use Efficiency in Response to Warming in an Alpine Meadow(Wiley, 2018-02) Quan, Quan; Zhang, Fangyue; Tian, Dashuan; Zhou, Qingping; Wang, Lixin; Niu, Shuli; Earth Sciences, School of ScienceAs a key linkage of C and water cycles, water‐use efficiency (WUE) quantifies how much water an ecosystem uses for carbon gain. Although ecosystem C and water fluxes have been intensively studied, yet it remains unclear how ecosystem WUE responds to climate warming and which processes dominate the response of WUE. To answer these questions, we examined canopy WUE (WUEc), ecosystem WUE (WUEe) and their components including gross ecosystem productivity, ecosystem evapotranspiration (ET), soil evaporation (E), and plant canopy transpiration (T), in response to warming in an alpine meadow by using a manipulative warming experiment in 2015 and 2016. As expected, low‐ and high‐level warming treatments increased soil temperature (Tsoil) at 10 cm on average by 1.65 and 2.77°C, but decreased soil moisture (Msoil) by 2.52 and 7.6 vol %, respectively, across the two years. Low‐ and high‐level warming increased WUEe by 7.7 and 9.3% over the two years, but rarely changed WUEc in either year. T/ET ratio determined the differential responses of WUEc and WUEe. Larger T/ET led to less difference between WUEc and WUEe. By partitioning WUEc and WUEe into different carbon and water fluxes, we found that T rather than gross ecosystem productivity or E dominated the responses of WUEc and WUEe to warming. This study provides empirical insights into how ecosystem WUE responds to warming and illustrates the importance of plant transpiration in regulating ecosystem WUE under future climate change.