ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "topological degree"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Periodic points of latitudinal maps of the m-dimensional sphere
    (AIMS, 2016-11) Graff, Grzegorz; Misiurewicz, Michał; Nowak-Przygodzki, Piotr; Department of Mathematical Sciences, School of Science
    Let f be a smooth self-map of the m-dimensional sphere Sm. Under the assumption that f preserves latitudinal foliations with the fibres S1, we estimate from below the number of fixed points of the iterates of f. The paper generalizes the results obtained by Pugh and Shub and by Misiurewicz.
  • Loading...
    Thumbnail Image
    Item
    Shub’s conjecture for smooth longitudinal maps of Sm
    (Taylor & Francis, 2018) Graff, Grzegorz; Misiurewicz, Michał; Nowak-Przygodzki, Piotr; Mathematical Sciences, School of Science
    Let f be a smooth map of the m-dimensional sphere Sm to itself, preserving the longitudinal foliation. We estimate from below the number of fixed points of the iterates of f, reduce Shub’s conjecture for longitudinal maps to a lower dimensional classical version, and prove the conjecture in case m=2 and in a weak form for m=3.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University