ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "thiadiazole ROMs"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells
    (RSC, 2018-04) Huang, Jinhua; Duan, Wentao; Zhang, Jingjing; Shkrob, Ilya A.; Assary, Rajeev S.; Pan, Baofei; Liao, Chen; Zhang, Zhengcheng; Wei, Xiaoliang; Zhang, Lu; Mechanical Engineering and Energy, School of Engineering and Technology
    Understanding structure–property relationships is essential for designing energy-rich redox active organic molecules (ROMs) for all-organic redox flow batteries. Herein we examine thiadiazole ROMs for storage of negative charge in the flow cells. These versatile molecules have excellent solubility and low redox potentials, allowing high energy density to be achieved. By systematically incorporating groups with varying electron accepting/withdrawing ability, we have examined substituent effects on their properties of interest, including redox potentials, calendar lives of charged ROMs in electrolyte, and the flow cell cycling performance. While the calendar life of energized fluids can be tuned in a predictable fashion over a wide range, the improvements in the calendar life do not automatically translate into the enhanced cycling performance, indicating that in addition to the slow reactions of charged species in the solvent bulk, there are other parasitic reactions that occur only during the electrochemical cycling of the cell and can dramatically affect the cycling lifetime.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University