ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "thermodynamically stable ultra-small nanocrystals"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Investigation of Photophysical and Electrochemical Properties of Magic-Sized CdS Nanocrystals
    (Office of the Vice Chancellor for Research, 2013-04-05) Lawrence, Katie N.; Dolai, Sukanta; Irving, Charles
    Colloidal semiconductor nanocrystals (NCs) have been the interest of many studies over the past two decades due to their applications in device fabrication, electrocatalysts, and medical diagnostics. Recent discovery of thermodynamically stable ultra-small nanocrystals (“magic-sized”) has provided the opportunity to understand their different properties at the molecular level. Herein we present the synthesis and purification of poly(ethylene glycol) thiolate-capped magic-sized CdS nanocrystals with distinct photophysical properties. These CdS NCs overcame solubility restraints by directly transferring from aqueous to organic mediums and also showed significant increased in peak sharpness when analyzed by high-resolution MALDI-TOF-MS, which confirmed formation of (CdS)33,34 nanocrystals. The electrochemical properties of dissolved CdS nanocrystals were investigated in organic solvent/electrolyte medium by different voltammetric techniques. The nanocrystals displayed molecule-like HOMO-LUMO energy gap. The electrochemical features are strongly temperature, solvent, and capping-ligand thickness dependent. We also developed a working model of the energy level structure of the PEG-thiolate-capped (CdS)33,34 nanocrystals.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University