ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "thermal properties"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    First principles study of thermodynamic properties of lanthanum zirconate
    (2014) Guo, Xingye; Zhang, Jing
    Lanthanum zirconia (La2Zr2O7) has become an advanced thermal barrier coating material due to its low thermal conductivity and high temperature stability. In this work, the first principles calculations were used to study the thermodynamic properties of the material. Lattice parameters, bulk and shear modulus, and specific heat of La2Zr2O7 were calculated by means of density functional theory (DFT). Hydrostatic pressure-dependent elasticity constants and bulk modulus were also studied. The thermal conductivity was calculated based on the Fourier's law. The calculated properties are in excellent agreement with the experimental and calculation results in literature.
  • Loading...
    Thumbnail Image
    Item
    First principles study on the electrochemical, thermal and mechanical properties of LiCoO2 for thin film rechargeable battery
    (2014) Wu, Linmin; Hoh Lee, Weng; Zhang, Jing
    Thin film rechargeable battery has become a research hotspot because of its small size and high energy density. Lithium cobalt oxide as a typical cathode material in classical lithium ion batteries is also widely used in thin film rechargeable batteries. In this work, the electrochemical, mechanical and thermal properties of LiCoO2 were systematically investigated using the first principles method. Elastic constants under hydrostatic pressures between 0 to 40 GPa were computed. Specific heat and Debye temperature at low temperature were discussed. Thermal conductivity was obtained using the imposed-flux method. The results show good agreements with experimental data and computational results in literature.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University