ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "system on chip"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Low-Power ASIC Design for Multiple Integrated Sensors Applications
    (Office of the Vice Chancellor for Research, 2013-04-05) Jafarian, Hossein; Daneshkhah, Ali; Shrestha, Sudhir; Agarwal, Mangilal; Rizkalla, Maher; Varahramyan, Kody
    The aim of this work is to develop sensor integrated low-power chip for biomedical and other applications. Complementary metal-oxide-semiconductor (CMOS) technology in integrated circuit (IC) design has been applied to develop application specific integrated circuits (ASIC). An ASIC design that includes analog and digital sub-systems for various applications forming a system on chip (SoC) is presented. The analog sub-system drives multiple sensors, while the digital sub-system manages power, sensors, and signal output. A frequency of the pulse signals generated by the analog sub-system depends on the input voltage, which in-turn varies with sensor parameters. The frequency change of 750 MHz to 1 GHz was observed for input voltage variations of 1.2 to 2.2 V, with sensitivity of 10 mV. A separate temperature sensor included in the analog sub-system demonstrated frequency change of 830 to 440 MHz for temperature variations of ˗50°C to 100°C with resolution of 1°C. The output signal in digital sub-system is generated by counting the input pulses for each clock which has ‘on-state’ of only 3/16 seconds. This results in a significant reduction in the power consumption. This poster presents and discusses the system design and simulation results.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University