ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "supplements"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    What Is in Your Beet Juice? Nitrate and Nitrite Content of Beet Juice Products Marketed to Athletes
    (Human Kinetics, 2019-07-01) Gallardo, Edgar J.; Coggan, Andrew R.; Physical Therapy, School of Health and Human Sciences
    Consumption of beetroot juice (BRJ) supplements has become popular among athletes because beets tend to be rich in nitrate (NO3 − ), which can enhance exercise performance by increasing nitric oxide production. The NO3 − content of beets can vary significantly, however, making it difficult to know how much NO3 − any product actually contains. Samples from 45 different lots of 24 different BRJ products from 21 different companies were therefore analyzed for NO3 − (and nitrite [NO2 − ]) concentration using high-performance liquid chromatography. The NO3 − and NO2 − content (i.e., amount per serving) was then calculated based on either (a) the manufacturer’s recommended serving size (for prepackaged/single dose products) or (b) as used in previous studies, a volume of 500 ml (for BRJ sold in bulk containers). There was moderate-to-large variability in NO3 − content between samples of the same product, with a mean coefficient of variation of 30% ± 26% (range 2–83%). There was even greater variability between products, with a ∼50-fold range in NO3 − content between the lowest and highest. Only five products consistently provided ≥5 mmol of NO3 − /serving, which seems to be the minimal dose required to enhance exercise performance in most individuals. NO2 − contents were generally low (i.e., ≤0.5% compared with NO3 − ), although two products contained 10% and 14%. The results of this study may be useful to athletes and their support staff contemplating which (if any) BRJ product to utilize. These data may also offer insight into variability in the literature with respect to the effects of BRJ on exercise performance.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University