- Browse by Subject
Browsing by Subject "structure design"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials(Wiley, 2021-11) Li, Guohao; Wyatt, Brian C.; Song, Fei; Yu, Changqiang; Wu, Zhenjun; Xie, Xiuqiang; Anasori, Babak; Zhang, Nan; Mechanical and Energy Engineering, School of Engineering and Technology2D titanium carbide (Ti3C2Tx) MXene films, with their well-defined microstructures and chemical functionality, provide a macroscale use of nano-sized Ti3C2Tx flakes. Ti3C2Tx films have attractive physicochemical properties favorable for device design, such as high electrical conductivity (up to 20 000 S cm–1), impressive volumetric capacitance (1500 F cm–3), strong in-plane mechanical strength (up to 570 MPa), and a high degree of flexibility. Here, the appealing features of Ti3C2Tx-based films enabled by the layer-to-layer arrangement of nanosheets are reviewed. We devote attention to the key strategies for actualizing desirable characteristics in Ti3C2Tx-based functional films, such as high and tunable electrical conductivity, outstanding mechanical properties, enhanced oxidation-resistance and shelf life, hydrophilicity/hydrophobicity, adjustable porosity, and convenient processability. This review further discusses fundamental aspects and advances in the applications of Ti3C2Tx-based films with a focus on illuminating the relationship between the structural features and the resulting performances for target applications. Finally, the challenges and opportunities in terms of future research, development, and applications of Ti3C2Tx-based films are suggested. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for the further development of Ti3C2Tx-based functional films, and contribute to the advances in MXene technology.Item Concurrent topology optimization of structures and materials(2013-12-11) Liu, Kai; Tovar, Andrés; Nematollahi, Khosrow; Koskie, Sarah; Anwar, SohelTopology optimization allows designers to obtain lightweight structures considering the binary distribution of a solid material. The introduction of cellular material models in topology optimization allows designers to achieve significant weight reductions in structural applications. However, the traditional topology optimization method is challenged by the use of cellular materials. Furthermore, increased material savings and performance can be achieved if the material and the structure topologies are concurrently designed. Hence, multi-scale topology optimization methodologies are introduced to fulfill this goal. The objective of this investigation is to discuss and compare the design methodologies to obtaining optimal macro-scale structures and the corresponding optimal meso-scale material designs in continuum design domains. These approaches make use of homogenization theory to establish communication bridges between both material and structural scales. The periodicity constraint makes such cellular materials manufacturable while relaxing the periodicity constraint to achieve major improvements of structural performance. Penalization methods are used to obtain binary solutions in both scales. The proposed methodologies are demonstrated in the design of stiff structure and compliant mechanism synthesis. The multiscale results are compared with the traditional structural-level designs in the context of Pareto solutions, demonstrating benefits of ultra-lightweight configurations. Errors involved in the mult-scale topology optimization procedure are also discussed. Errors are mainly classified as mesh refinement errors and homogenization errors. Comparisons between the multi-level designs and uni-level designs of solid structures, structures using periodic cellular materials and non-periodic cellular materials are provided. Error quantifications also indicate the superiority of using non-periodic cellular materials rather than periodic cellular materials.