ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "spatial cell recognition"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    xSiGra: explainable model for single-cell spatial data elucidation
    (Oxford University Press, 2024) Budhkar, Aishwarya; Tang, Ziyang; Liu, Xiang; Zhang, Xuhong; Su, Jing; Song, Qianqian; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Recent advancements in spatial imaging technologies have revolutionized the acquisition of high-resolution multichannel images, gene expressions, and spatial locations at the single-cell level. Our study introduces xSiGra, an interpretable graph-based AI model, designed to elucidate interpretable features of identified spatial cell types, by harnessing multimodal features from spatial imaging technologies. By constructing a spatial cellular graph with immunohistology images and gene expression as node attributes, xSiGra employs hybrid graph transformer models to delineate spatial cell types. Additionally, xSiGra integrates a novel variant of gradient-weighted class activation mapping component to uncover interpretable features, including pivotal genes and cells for various cell types, thereby facilitating deeper biological insights from spatial data. Through rigorous benchmarking against existing methods, xSiGra demonstrates superior performance across diverse spatial imaging datasets. Application of xSiGra on a lung tumor slice unveils the importance score of cells, illustrating that cellular activity is not solely determined by itself but also impacted by neighboring cells. Moreover, leveraging the identified interpretable genes, xSiGra reveals endothelial cell subset interacting with tumor cells, indicating its heterogeneous underlying mechanisms within complex cellular interactions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University