- Browse by Subject
Browsing by Subject "space solar power"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Plasma Extraction of Metals in Space(Juniper Publishers, 2019-11) Schubert, Peter J.; Electrical and Computer Engineering, School of Engineering and TechnologyExtraction of purified metals from extraterrestrial materials can be accomplished in several ways, such as beneficiation, hydrogen reduction, recovery of spent rockets, direct melting of iron meteorites, and plasma isotope separation. Presented here is a method for multiple simultaneous extraction of multiple metals and metalloids from regolith. Two patented approaches are described which can operate on a planetary surface, or in the microgravity environment of orbit. This approach to isotope separation applies to regolith fines but is advantageously applied to the effluent of a patented oxygen extraction method. In this way, a plurality of valuable raw materials can be obtained with a single system, suitable for operation on the Moon or at the surface of an asteroid. Silicon is of interest for studies of purity due to its importance in photovoltaics. A silicon-aluminum aerospace alloy can be produced directly, called Silumin, which has value in construction of habitats and space craft in space. Silicon can also be combined with carbon to form the wide-bandgap semiconductor SiC from which high-power and radiation-tolerant power transistors can be fabricated. Furthermore, this method lends itself to additive manufacturing whereby specific shapes of purified metals can be formed directly from the plasma extraction process.Item Solar power satellite with no moving parts(Office of the Vice Chancellor for Research, IUPUI, 2016-04-08) Schubert, Peter J.The only solution to the global energy mess is sunlight captured in space. No other technology scales as well, and is as clean as Space Solar Power. Best of all, this is baseload power – “always on” – without the intermittency which will always plague ground-based solar and wind. Although invented in 1968, SSP designs have been impractical until now. A novel design architecture, relying on use of materials already in space, enables SSP at costs competitive with existing baseload power sources. And all this without greenhouse gas emissions. This work describes the technology and economics. The “tin can” solar power satellite is comprised of a cylindrical shell of solar panels. This configuration has integral thermal management by using the non-illuminated portions of the shell as a radiating heat shield, maintaining the solar cells within workable temperature ranges. The tethers holding the shell to the central conductor spire present a complex radiative environment which is studied further herein to obtain a more precise measurement of high and low temperature limits. Heat generated by the transmitting antenna and its power electronics is also studied to understand its impact on the requirements imposed on components and subsystems. Achieving a slow rotation of a very large diameter cylindrical shell with minimal internal strength interacts with the assembly process through tradeoffs between propellant, assembly jigs, and construction spacecraft. Vibrations induced in the cylindrical shell are studied including transient behavior during spin-up. The panel-to-panel forces expected during spin-up, and during on-going operations as gravity gradients excite low-frequency modes are studied in order to derive specifications for linkage rotation and strength. Finally, the results of imperfect assembly, lost parts, and meteorite strikes are investigated to assess risk to other spacecraft. Solar wind pressure is evaluated to determine station-keeping requirements. Assembly in an orbit slightly higher than GEO may be selected to minimize collateral damages, and means of adjusting the orbit are studied to derive overall architecture propellant requirements, anticipating a mixture of in situ propellant options versus earth-sourced propellants. This work charts a pathway to the ultimate energy source for all mankind for all time to come.Item Spacetenna Flatness and Error Correction(IEEE, 2019-10) Kragt Finnell, Abigail J.; Heng, Penghui; Powell, Sawyer H.; Schubert, Peter J.; Electrical and Computer Engineering, School of Engineering and TechnologyWireless Power Transfer (WPT) from space-to-earth at a large scale will not be possible until the Side Lobe Levels (SLL) are reduced many orders of magnitude from the current technology available today. To accomplish this, careful design of the transmitting antenna (spacetenna) is imperative. Any module failures or errors in connectivity, including askew angles between adjacent sandwich modules, reduce the effectiveness of the antenna design and thereby increase SLL. This work examines two interrelated issues; error detection and repair, and spacetenna flatness correction. Multiple different designs of sandwich module mechanical connections, wiring, and control are examined. The results of the analysis and best options are presented in order to facilitate for ultra-low SLL for use in Space Solar Power for the benefit of humanity and the environment.