ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "smart sensing"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    IEEE Access Special Section Editorial: Advanced Information Sensing and Learning Technologies for Data-Centric Smart Health Applications
    (IEEE, 2021-02) Zhang, Qingxue; Piuri, Vincenzo; Clancy, Edward A.; Zhou, Dian; Penzel, Thomas; Hu, Wenchuang Walter; Electrical and Computer Engineering, School of Engineering and Technology
    Smart health is bringing vast and promising possibilities on the road to comprehensive health management. Smart health applications are strongly data-centric and, thus, empowered by two key factors: information sensing and information learning. In a smart health system, it is crucial to effectively sense individuals’ health information and intelligently learn from its high-level health insights. These two factors are also closely coupled. For example, to enhance the signal quality, a sensing array requires advanced information learning techniques to fuse the information, and to enrich medical insights in mobile health monitoring, we need to combine “multimodal signal processing and machine learning techniques” and “nonintrusive multimodality sensing methods.” In new smart health application exploration, challenges arise in both information sensing and learning, especially their areas of interaction.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University