ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "skeletal muscle"

Now showing 1 - 10 of 14
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Angiogenic potential of skeletal muscle derived extracellular vesicles differs between oxidative and glycolytic muscle tissue in mice
    (Nature, 2023-11) Kargl, Christopher K.; Jia, Zhihao; Shera, Deborah A.; Sullivan, Brian P.; Burton, Lundon C.; Kim, Kun Ho; Nie, Yaohui; Hubal, Monica J.; Shannahan, Jonathan H.; Kuang, Shihuan; Gavin, Timothy P.; Exercise & Kinesiology, School of Health and Human Sciences
    Skeletal muscle fibers regulate surrounding endothelial cells (EC) via secretion of numerous angiogenic factors, including extracellular vesicles (SkM-EV). Muscle fibers are broadly classified as oxidative (OXI) or glycolytic (GLY) depending on their metabolic characteristics. OXI fibers secrete more pro-angiogenic factors and have greater capillary densities than GLY fibers. OXI muscle secretes more EV than GLY, however it is unknown whether muscle metabolic characteristics regulate EV contents and signaling potential. EVs were isolated from primarily oxidative or glycolytic muscle tissue from mice. MicroRNA (miR) contents were determined and endothelial cells were treated with OXI- and GLY-EV to investigate angiogenic signaling potential. There were considerable differences in miR contents between OXI- and GLY-EV and pathway analysis identified that OXI-EV miR were predicted to positively regulate multiple endothelial-specific pathways, compared to GLY-EV. OXI-EV improved in vitro angiogenesis, which may have been mediated through nitric oxide synthase (NOS) related pathways, as treatment of endothelial cells with a non-selective NOS inhibitor abolished the angiogenic benefits of OXI-EV. This is the first report to show widespread differences in miR contents between SkM-EV isolated from metabolically different muscle tissue and the first to demonstrate that oxidative muscle tissue secretes EV with greater angiogenic signaling potential than glycolytic muscle tissue.
  • Loading...
    Thumbnail Image
    Item
    Changes in Skeletal Muscle PAK1 Levels Regulate Tissue Crosstalk to Impact Whole Body Glucose Homeostasis
    (Frontiers, 2022-02-10) Merz, Karla E.; Tunduguru, Ragadeepthi; Ahn, Miwon; Salunkhe, Vishal A.; Veluthakal, Rajakrishnan; Hwang, Jinhee; Bhattacharya, Supriyo; McCown, Erika M.; Garcia, Pablo A.; Zhou, Chunxue; Oh, Eunjin; Yoder, Stephanie M.; Elmendorf, Jeffrey S.; Thurmond, Debbie C.; Anatomy, Cell Biology and Physiology, School of Medicine
    Skeletal muscle accounts for ~80% of insulin-stimulated glucose uptake. The Group I p21–activated kinase 1 (PAK1) is required for the non-canonical insulin-stimulated GLUT4 vesicle translocation in skeletal muscle cells. We found that the abundances of PAK1 protein and its downstream effector in muscle, ARPC1B, are significantly reduced in the skeletal muscle of humans with type 2 diabetes, compared to the non-diabetic controls, making skeletal muscle PAK1 a candidate regulator of glucose homeostasis. Although whole-body PAK1 knockout mice exhibit glucose intolerance and are insulin resistant, the contribution of skeletal muscle PAK1 in particular was unknown. As such, we developed inducible skeletal muscle-specific PAK1 knockout (skmPAK1-iKO) and overexpression (skmPAK1-iOE) mouse models to evaluate the role of PAK1 in skeletal muscle insulin sensitivity and glucose homeostasis. Using intraperitoneal glucose tolerance and insulin tolerance testing, we found that skeletal muscle PAK1 is required for maintaining whole body glucose homeostasis. Moreover, PAK1 enrichment in GLUT4-myc-L6 myoblasts preserves normal insulin-stimulated GLUT4 translocation under insulin resistance conditions. Unexpectedly, skmPAK1-iKO also showed aberrant plasma insulin levels following a glucose challenge. By applying conditioned media from PAK1-enriched myotubes or myoblasts to β-cells in culture, we established that a muscle-derived circulating factor(s) could enhance β-cell function. Taken together, these data suggest that PAK1 levels in the skeletal muscle can regulate not only skeletal muscle insulin sensitivity, but can also engage in tissue crosstalk with pancreatic β-cells, unveiling a new molecular mechanism by which PAK1 regulates whole-body glucose homeostasis.
  • Loading...
    Thumbnail Image
    Item
    Excess membrane cholesterol is an early contributing reversible aspect of skeletal muscle insulin resistance in C57BL/6NJ mice fed a Western-style high-fat diet
    (American Physiological Society, 2019-08-06) Grice, Brian A.; Barton, Kelly J.; Covert, Jacob D.; Kreilach, Alec M.; Tackett, Lixuan; Brozinick, Joseph T.; Elmendorf, Jeffrey S.; Anatomy and Cell Biology, School of Medicine
    Skeletal muscle insulin resistance manifests shortly after high-fat feeding, yet mechanisms are not known. Here we set out to determine whether excess skeletal muscle membrane cholesterol and cytoskeletal derangement known to compromise glucose transporter (GLUT)4 regulation occurs early after high-fat feeding. We fed 6-wk-old male C57BL/6NJ mice either a low-fat (LF, 10% kcal) or a high-fat (HF, 45% kcal) diet for 1 wk. This HF feeding challenge was associated with an increase, albeit slight, in body mass, glucose intolerance, and hyperinsulinemia. Liver analyses did not reveal signs of hepatic insulin resistance; however, skeletal muscle immunoblots of triad-enriched regions containing transverse tubule membrane showed a marked loss of stimulated GLUT4 recruitment. An increase in cholesterol was also found in these fractions from HF-fed mice. These derangements were associated with a marked loss of cortical filamentous actin (F-actin) that is essential for GLUT4 regulation and known to be compromised by increases in membrane cholesterol. Both the withdrawal of the HF diet and two subcutaneous injections of the cholesterol-lowering agent methyl-β-cyclodextrin at 3 and 6 days during the 1-wk HF feeding intervention completely mitigated cholesterol accumulation, cortical F-actin loss, and GLUT4 dysregulation. Moreover, these beneficial membrane/cytoskeletal changes occurred concomitant with a full restoration of metabolic responses. These results identify skeletal muscle membrane cholesterol accumulation as an early, reversible, feature of insulin resistance and suggest cortical F-actin loss as an early derangement of skeletal muscle insulin resistance.
  • Loading...
    Thumbnail Image
    Item
    Identification of an Actin-Based Antidiabetic Action of Chromium in Skeletal Muscle
    (Office of the Vice Chancellor for Research, 2010-04-09) Hoffman, Nolan J.; Habegger, Kirk M.; Elmendorf, Jeffrey S.
    We recently demonstrated that cortical filamentous actin (F-actin) loss contributes to cellular insulin resistance induced by hyperinsulinemia. New animal and human analyses suggest a similar loss of F-actin is present in insulin-resistant skeletal muscle and results from cellular cholesterol accrual. Interestingly, we found that chromium picolinate (CrPic), a dietary supplement recognized to improve insulin action, lowers plasma membrane cholesterol in cultured adipocytes. Understanding whether CrPic can improve F-actin structure in insulinresistant skeletal muscle via lowering membrane cholesterol is not known, yet significant, as skeletal muscle is responsible for a large majority of insulin-stimulated glucose transport. In L6 myotubes stably expressing the insulin-responsive glucose transporter GLUT4 carrying an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased myc-epitope labeling at the surface of intact cells by ~2-fold (P<0.05). In contrast, the ability of insulin to stimulate this process was inhibited 25% (P<0.05) by sustained exposure of L6 myotubes to insulin (12 h, 5 nM). Defects in insulin signaling did not readily account for the observed disruption. However, we found that insulin-induced insulin-resistant myotubes displayed a 28% elevation (P<0.05) in membrane cholesterol with a reciprocal 14% loss (P<0.05) in F-actin. This cholesterol/actin imbalance and insulin/GLUT4 dysfunction was corrected by the cholesterollowering action of CrPic. Mechanistically, CrPic increased the activity of the AMP-activated protein kinase (AMPK). Tests also revealed that other well-recognized activators of AMPK (e.g., AICAR, DNP) lowered membrane cholesterol and that, in a fashion similar to that witnessed for CrPic, improved regulation of GLUT4 in insulin-induced insulin-resistant myotubes. These data, as well as findings from ongoing siRNA-mediated AMPK knockdown experiments, are consistent with AMPK mediating its antidiabetic action by lowering cellular cholesterol. We predict that chromium, via AMPK activation, protects against cholesterol accrual that induces skeletal muscle F-actin loss and insulin resistance.
  • Loading...
    Thumbnail Image
    Item
    Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9-13 Years
    (Wiley, 2017-07) Kindler, Joseph M.; Pollock, Norman K.; Laing, Emma M.; Oshri, Assaf; Jenkins, Nathan T.; Isales, Carlos M.; Hamrick, Mark W.; Ding, Ke-Hong; Hausman, Dorothy B.; McCabe, George P.; Martin, Berdine R.; Gallant, Kathleen M. Hill; Warden, Stuart J.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.; Department of Medicine
    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed.
  • Loading...
    Thumbnail Image
    Item
    Investigating Skeletal Muscle Metabolic Adaptations underlying Aerobic Fitness Gains Following High Intensity Interval Training in a Rat Model of Pulmonary Arterial Hypertension
    (Office of the Vice Chancellor for Research, 2015-04-17) Talley, Mary; Novack, Rachel; Chingombe, Tsungai J.; Lahm, Tim; Petrache, Irina; Brown, Mary Beth
    Rationale: In patients with pulmonary arterial hypertension (PAH) a shift from oxidative to a less efficient non-oxidative (glycolytic) metabolism in skeletal muscle is believed to contribute to the reduced exercise tolerance hallmark of the disease. As seen for other cardiopulmonary diseases, exercise training (ExT) may ameliorate this “glycolytic switch” in PAH and improve exercise capacity. Previous studies in this lab showed an improved metabolic profile of skeletal muscle in PAH rats following an ExT protocol of continuous running at moderate relative intensity, 60 minutes at 75% of maximal aerobic capacity (VO2Max). High intensity interval training (HIIT) has been shown in healthy individuals as well as in patients with cardiovascular disease to promote favorable cardiac and skeletal muscle adaptations and greater improvements in aerobic capacity versus customary continuous training. This study tests the hypothesis in a PAH rat model that HIIT will result in preserved aerobic capacity and a greater attenuation of skeletal muscle glycolytic shift than that observed with continuous moderate intensity exercise. Methods: Male Sprague-Dawley rats received either monocrotaline (MCT, 40 mg/kg, s.q.) to induce PAH (n= 8), or saline, for healthy controls (n=4). After 2 wks, with MCT-induced PAH wellestablished, 6 wks of treadmill HIIT was initiated for a subset of PAH animals (PAH-ExT, n= 6) and healthy controls (CON-ExT, n=2). The HIIT runs were alternated between 2 to 3 minutes of high intensity exercise (85% VO2max reserve) and active recovery intervals between 2 to 3 minutes (10 m/min, 0 incline) VO2max was assessed at baseline, and in pre-training and post-training via analysis of expired gases during incremental treadmill running. Preliminary results: MCT-induced decrement in VO2max was attenuated by HIIT. Abundance of membrane glucose transporter Glut-1, a marker of glycolytic metabolism, is currently being evaluated in soleus cryosections with immunofluorescent staining. Findings are being compared to historical data for PAH and healthy rats from a study protocol that differed only by training approach-continuous instead of HIIT.
  • Loading...
    Thumbnail Image
    Item
    Investigating Skeletal Muscle Metabolic Adaptations underlying Aerobic Fitness Gains following High Intensity Interval Training in a Rat Model of Pulmonary Arterial Hypertension
    (Office of the Vice Chancellor for Research, 2016-04-08) Talley, Mary; Troutman, Ashley; Neves, Evandro; Fisher, Amanda; Graber, Jeremy; Gladish, Brett; Presson, Robert; Petrache, Irina; Kline, Jeffrey A.; Lahm, Tim
    Rationale: In patients with pulmonary arterial hypertension (PAH) a shift from oxidative to a less efficient non-oxidative (glycolytic) metabolism in skeletal muscle is believed to contribute to the reduced exercise tolerance hallmark of the disease. As seen for other cardiopulmonary diseases, exercise training (ExT) may ameliorate this “glycolytic switch” in PAH and improve exercise capacity. Previous studies in this lab showed an improved metabolic profile of skeletal muscle in PAH rats following an ExT protocol of continuous running at moderate relative intensity, 60 minutes at 75% of maximal aerobic capacity (VO2 Max). This study tests the hypothesis in a PAH rat model that HIIT will also result in preserved aerobic capacity and attenuation of skeletal muscle glycolytic shift. Methods: Male Sprague-Dawley rats received either monocrotaline (MCT, 40 mg/kg) to induce mild PAH (n= 14), or saline, for healthy controls (n=9). After 2 wks, a 6 wkprogram of treadmill HIIT was initiated for a subset of PAH (n= 8) and healthy controls (n=6). The 30 min HIIT sessions alternated between 2 minutes at 85% VO2 max and 3 minutes at ~30% VO2 max. VO2 max was assessed at baseline, and in pre-training and post-training via analysis of expired gases. Preliminary results: MCT-induced decrement in VO2 max was attenuated by HIIT (p<0.05). Soleus muscle hypertrophy (soleus mass relative to body mass) tended to be higher (p=0.07) in HIIT vs. SED MCT. Membrane glucose transporter Glut-1, a marker of glycolytic metabolism, was evaluated in soleus cryosections with immunofluorescent staining and abundance was similar between sedentary and HIIT MCT rats (p>0.05). Western blotting of soleus homogenates for cytochromes I-V of the electron transport chain (OXPHOS), and for PGC1α, a potent stimulus for mitochondrial biogenesis, is being performed at present to further investigate potential training-induced adaptations in skeletal muscle metabolism
  • Loading...
    Thumbnail Image
    Item
    Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways
    (MDPI, 2019-09-04) Mo, Chenglin; Wang, Zhiying; Bonewald, Lynda; Brotto, Marco; Medicine, School of Medicine
    Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration.
  • Loading...
    Thumbnail Image
    Item
    Nitric oxide and skeletal muscle contractile function
    (Elsevier, 2022-05) Kumar, Ravi; Coggan, Andrew R.; Ferreira, Leonardo F.; Kinesiology, School of Health and Human Sciences
    Nitric oxide (NO) is complex modulator of skeletal muscle contractile function, capable of increasing or decreasing force and power output depending on multiple factors. This review explores the effects and potential mechanisms for modulation of skeletal muscle contractile function by NO, from pharmacological agents in isolated muscle preparations to dietary nitrate supplementation in humans and animals. Pharmacological manipulation in vitro suggests that NO signaling diminishes submaximal isometric force, whereas dietary manipulation in vivo suggest that NO enhances submaximal force. The bases for these different responses are unknown but could reflect dose-dependent effects. Maximal isometric force is unaffected by physiologically relevant levels of NO, which do not induce overt protein oxidation. Pharmacological and dietary manipulation of NO signaling enhances the maximal rate of isometric force development, unloaded shortening velocity, and peak power. We hypothesize that these effects are mediated by post-translational modifications of myofibrillar proteins that modulate thick filament regulation of contraction (e.g., mechanosensing and strain-dependence of cross-bridge kinetics). NO effects on contractile function appear to have some level of fiber type and sex-specificity. The mechanisms behind NO-mediated changes in skeletal muscle function need to be explored through proteomics analysis and advanced biophysical assays to advance the development of small molecules and open intriguing therapeutic and ergogenic possibilities for aging, disease, and athletic performance.
  • Loading...
    Thumbnail Image
    Item
    The Role of TGFβ in Bone-Muscle Crosstalk
    (Springer, 2017-02) Regan, Jenna N.; Trivedi, Trupti; Guise, Theresa A.; Waning, David L.; Department of Medicine, School of Medicine
    Purpose of Review The role of bone-derived factors in regulation of skeletal muscle function is an important emerging aspect of research into bone-muscle crosstalk. Implications for this area of research are far reaching and include understanding skeletal muscle weakness in cancer, osteoporosis, cachexia, rare diseases of bone, and aging. Recent Findings Recent research shows that bone-derived factors can lead to changes in the skeletal muscle. These changes can either be anabolic or catabolic, and we focus this review on the role of TGFβ in driving oxidative stress and skeletal muscle weakness in the setting of osteolytic cancer in the bone. Summary The bone is a preferred site for breast cancer metastasis and leads to pathological bone loss. Osteolytic cancer in the bone leads to release of TGFβ from the bone via osteoclast-mediated bone destruction. Our appreciation of crosstalk between the muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGFβ as a cause of skeletal muscle weakness in the setting of osteolytic cancer in the bone. Multiple points of potential therapeutic intervention are discussed.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University