- Browse by Subject
Browsing by Subject "single nucleotide polymorphism"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Genetic variants in anti-Mullerian hormone and anti-Mullerian hormone receptor genes and breast cancer risk in Caucasians and African Americans(2014-10) Nan, Hongmei; Dorgan, Joanne F.; Rebbeck, Timothy R.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthAnti-Mullerian hormone (AMH) regulates ovarian folliculogenesis by signaling via its receptors, and elevated serum AMH levels are associated with an increased risk of breast cancer. No previous studies have examined the effects of genetic variants in AMH-related genes on breast cancer risk. We evaluated the associations of 62 single nucleotide polymorphisms (SNPs) in AMH and its receptor genes, including AMH type 1 receptor (ACVR1) and AMH type 2 receptor (AMHR2), with the risk of breast cancer in the Women’s Insights and Shared Experiences (WISE) Study of Caucasians (346 cases and 442 controls), as well as African Americans (149 cases and 246 controls). Of the 62 SNPs evaluated, two showed a nominal significant association (P for trend < 0.05) with breast cancer risk among Caucasians, and another two among African Americans. The age-adjusted additive odds ratios (ORs) (95% confidence interval (95% CI)) of those two SNPs (ACVR1 rs12694937[C] and ACVR1 rs2883605[T]) for the risk of breast cancer among Caucasian women were 2.33 (1.20-4.52) and 0.68 (0.47-0.98), respectively. The age-adjusted additive ORs (95% CI) of those two SNPs (ACVR1 rs1146031[G] and AMHR2 functional SNP rs2002555[G]) for the risk of breast cancer among African American women were 0.63 (0.44-0.92) and 1.67 (1.10-2.53), respectively. However, these SNPs did not show significant associations after correction for multiple testing. Our findings do not provide strong supportive evidence for the contribution of genetic variants in AMH-related genes to the risk of developing breast cancer in either Caucasians or African Americans.Item Genetic variants in hypothalamic-pituitary-adrenal axis genes and breast cancer risk in Caucasians and African Americans(2015-09) Nan, Hongmei; Dorgan, Joanne F.; Rebbeck, Timothy R.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthElevated circulating levels of the adrenal androgen dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are associated with increased breast cancer risk in prospective studies. Genetic variants in hypothalamicpituitary- adrenal (HPA) axis genes may contribute to these circulating hormone levels, and consequently to breast cancer risk. No previous studies have examined the effects of genetic variants in HPA axis genes on breast cancer risk. We evaluated the associations of 49 single nucleotide polymorphisms (SNPs) in five HPA axis genes (NR3C1, NR3C2, CRH, CRHR1, and CRHBP) with the risk of breast cancer in the Women's Insights and Shared Experiences (WISE) Study of Caucasians (346 cases and 442 controls), as well as African Americans (149 cases and 246 controls). Of the 49 SNPs evaluated, one showed a nominal significant association (P for trend < 0.05) with breast cancer risk among Caucasians, and another two among African Americans. The age-adjusted additive odds ratio (OR) (95% confidence interval (95% CI)) of the SNP rs11747190[A] in the CRHBP gene for the risk of breast cancer among Caucasian women was 1.45 (1.09-1.94). The age-adjusted additive ORs (95% CIs) of two SNPs (CRHBP rs1700688[T] and CRHR1 rs17689471[C]) for the risk of breast cancer among African American women were 1.84 (1.13-2.98) and 2.48 (1.20-5.13), respectively. However, these SNPs did not show significant associations after correction for multiple testing. Our findings do not provide strong supportive evidence for the contribution of genetic variants in these HPA axis genes to the risk of developing breast cancer in either Caucasians or African Americans.Item Impact of EGF, IL28B, and PNPLA3 polymorphisms on the outcome of allograft hepatitis C: A multicenter study(Wiley Online Library, 2016-04) Mueller, Jessica L.; King, Linsday Y.; Johnson, Kara B.; Gao, Tian; Nephew, Lauren D.; Kothari, Darshan; Simpson, Mary Ann; Zheng, Hui; Wei, Lan; Corey, Kathleen E.; Misdraji, Joseph; Lee, Joon Hyoek; Lin, M. Valerie; Gogela, Neliswa A.; Fuchs, Bryan C.; Tanabe, Kenneth K.; Gordon, Fredric D.; Curry, Michael P.; Chung, Raymond T.Hepatitis C virus (HCV) infection is accelerated following liver transplantation (LT). Single nucleotide polymorphisms (SNPs) near the epidermal growth factor (EGF) (rs4444903), IL28B (rs12979860), and PNPLA3 (rs738409) loci are associated with treatment response, fibrosis, and hepatocellular carcinoma in non-transplant hepatitis C, but allograft population data are limited. We sought to determine the role of these SNPs in 264 patients with HCV who underwent LT between 1990 and 2008. Genotypes were determined from donor wedge/allograft biopsies and recipient explants. Cox proportional hazards model was used to assess time to cirrhosis, liver-related death, and retransplantation, adjusting for donor age and sustained virological response (SVR). Over a median follow-up of 6.3 yr, a trend toward increased progression to graft cirrhosis was observed among recipients of an EGF non-AA vs. AA donor liver (adjusted HR 2.01; 95% CI 0.93–4.34; p = 0.08). No other genotypes predicted cirrhosis development or graft survival. The CC IL28B variant in both recipients and donors was associated with increased rate of SVR (R-CC/D-CC 8/12[67%], R-non-CC/D-CC or R-CC/D-non-CC 23/52[44%], R-non-CC/D-non-CC 12/45[27%], p linear trend = 0.009). Recipient EGF, IL28B, and PNPLA3, and donor IL28B and PNPLA3 genotypes do not predict adverse outcomes in HCV LT recipients. A potential association exists between donor EGF genotype and cirrhosis.Item An Investigation of Modifying Effects of Single Nucleotide Polymorphisms in Metabolism-related Genes on the Relationship between Peripheral Nerve Function and Mercury Levels in Urine and Hair(2012-02) Wang, Yi; Goodrich, Jaclyn M.; Werner, Robert; Gillespie, Brenda; Basu, Niladri; Franzblau, AlfredMercury (Hg) is a potent neurotoxicant. We hypothesized that single nucleotide polymorphisms (SNPs) in genes coding glutathione-related proteins, selenoproteins and metallothioneins may modify the relationship of mercury biomarkers with changes in peripheral nerve function. Dental professionals (n=515) were recruited in 2009 and 2010. Sensory nerve function (onset latency, peak latency and amplitude) of the median, ulnar and sural nerves was recorded. Samples of urine, hair and DNA were collected. Covariates related to demographics, nerve function and elemental and methyl-mercury exposure were also collected. Subjects included 244 dentists (47.4%) and 269 non-dentists (52.2%; mostly dental hygienists and dental assistants). The mean mercury levels in urine (1.06 μg/L) and hair (0.51 μg/g) were not significantly different from the US general population (0.95 μg/L and 0.47 μg/g, respectively). In multivariate linear models predicting nerve function adjusting for covariates, only 3 out of a total of 504 models showed stable and statistically significant interaction of SNPs with mercury biomarkers. Overall, given the possibility of false positives, the results suggested little evidence of effect modification of the SNPs on the relationship between mercury biomarkers with peripheral nerve function at exposure levels that are relevant to the general US population.Item Minocycline Hepatotoxicity: Clinical characterization and identification of HLA-B* 35:02 as a risk factor(Elsevier, 2017) Urban, Thomas Jacob; Nicoletti, Paola; Chalasani, Naga; Serrano, Jose; Stolz, Andrew; Daly, Ann; Aithal, Guruprasad; Dillon, John; Navarro, Victor; Odin, Joseph; Barnhart, Huiman; Ostrov, David; Long, Nanye; Cirulli, Elizabeth Theresa; Watkins, Paul Brent; Fontana, Robert John; Department of Medicine, IU School of MedicineBackground & Aims Minocycline hepatotoxicity can present with prominent autoimmune features in previously healthy individuals. The aim of this study was to identify genetic determinants of minocycline drug-induced liver injury (DILI) in a well-phenotyped cohort of patients. Methods Caucasian patients with minocycline DILI underwent genome-wide genotyping and were compared to unexposed population controls. Human leukocyte antigen (HLA) binding of minocycline was assessed using AutoDock Vina. Results Among the 25 cases, 80% were female, median age was 19 years and median latency from drug start to DILI onset was 318 days. At presentation, 76% had acute hepatocellular liver injury, median ALT 1,077 U/L (range: 63 to 2,333), median bilirubin 4.5 mg/dl (range: 0.2 to 16.7), and 90% had a +ANA. During follow-up, 50% were treated with corticosteroids and no participants died or required a liver transplant. A significant association was noted between HLA-B∗35:02 and risk for minocycline DILI; a 16% carrier frequency in DILI cases compared to 0.6% in population controls (odds ratio: 29.6, 95% CI: 7.8–89.8, p = 2.5 × 10−8). Verification of HLA-B∗35:02 imputation was confirmed by sequence-based HLA typing. HLA-B∗35:02 carriers had similar presenting features and outcomes compared to non-carriers. In silico modeling studies support the hypothesis that direct binding of minocycline to this novel HLA risk allele might be an important initiating event in minocycline DILI. Conclusion HLA-B∗35:02 is a rare HLA allele that was more frequently identified in the 25 minocycline DILI cases compared to population controls. If confirmed in other cohorts, this HLA allele may prove to be a useful diagnostic marker of minocycline DILI. Lay summary Development of liver injury following prolonged use of minocycline for acne is a rare but potentially severe form of drug-induced liver injury. Our study demonstrates that individuals who are HLA-B∗35:02 carriers are at increased risk of developing minocycline related liver injury. These results may help doctors more rapidly and confidently diagnose affected patients and possibly reduce the risk of liver injury in individuals receiving minocycline going forward.