- Browse by Subject
Browsing by Subject "selenium-doped germanium"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item In Situ and Operando Investigation of the Dynamic Morphological and Phase Changes of Selenium-doped Germanium Electrode during (De)Lithiation Processes(RSC, 2020-01) Li, Tianyi; Lim, Cheolwoong; Cui, Yi; Zhou, Xinwei; Kang, Huixiao; Yan, Bo; Meyerson, Melissa L.; Weeks, Jason A.; Liu, Qi; Guo, Fangmin; Kou, Ronghui; Liu, Yuzi; De Andrade, Vincent; De Carlo, Francesco; Ren, Yang; Sun, Cheng-Jun; Mullins, C. Buddie; Chen, Lei; Fu, Yongzhu; Zhu, Likun; Mechanical and Energy Engineering, School of Engineering and TechnologyTo understand the effect of selenium doping on the good cycling performance and rate capability of a Ge0.9Se0.1 electrode, the dynamic morphological and phase changes of the Ge0.9Se0.1 electrode were investigated by synchrotron-based operando transmission X-ray microscopy (TXM) imaging, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The TXM results show that the Ge0.9Se0.1 particle retains its original shape after a large volume change induced by (de)lithiation and undergoes a more sudden morphological and optical density change than pure Ge. The difference between Ge0.9Se0.1 and Ge is attributed to a super-ionically conductive Li–Se–Ge network formed inside Ge0.9Se0.1 particles, which contributes to fast Li-ion pathways into the particle and nano-structuring of Ge as well as buffering the volume change of Ge. The XRD and XAS results confirm the formation of a Li–Se–Ge network and reveal that the Li–Se–Ge phase forms during the early stages of lithiation and is an inactive phase. The Li–Se–Ge network also can suppress the formation of the crystalline Li15Ge4 phase. These in situ and operando results reveal the effect of the in situ formed, super-ionically conductive, and inactive network on the cycling performance of Li-ion batteries and shed light on the design of high capacity electrode materials.Item In-Situ Characterization of Dynamic Morphological and Phase Changes of Selenium-doped Germanium Using a Single Particle Cell and Synchrotron Transmission X-ray Microscopy(Wiley, 2021-03) Li, Tianyi; Zhou, Xinwei; Cui, Yi; Meyerson, Melissa L.; Weeks, Jason A.; Mullins, Buddie; De Andrade, Vincent; De Carlo, Francesco; Liu, Yuzi; Zhu, Likun; Mechanical and Energy Engineering, School of Engineering and TechnologyThe dynamic information of lithium-ion battery active materials obtained from coin cell-based in-situ characterizations might not represent the properties of the active material itself because many other factors in the cell could have impacts on the cell performance. To address this problem, a single particle cell was developed to perform the in-situ characterization without the interference of inactive materials in the battery electrode as well as the X-ray-induced damage. In this study, the dynamic morphological and phase changes of selenium-doped germanium (Ge0.9Se0.1) at the single particle level were investigated via synchrotron-based in-situ transmission X-ray microscopy. The results demonstrate the good reversibility of Ge0.9Se0.1 at high cycling rate that helps understand its good cycling performance and rate capability. This in-situ and operando technique based on a single particle battery cell provides an approach to understanding the dynamic electrochemical processes of battery materials during charging and discharging at the particle level.