ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "resource allocation graph (RAG)"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    GPU-OSDDA: A Bit-Vector GPU-based Deadlock Detection Algorithm for Single-Unit Resource Systems
    (Taylor & Francis, 2015-09) Abell, Stephen; Nhan, Do; Lee, John J.; Department of Electrical and Computer Engineering
    This article presents a GPU-based single-unit deadlock detection methodology and its algorithm, GPU-OSDDA. Our GPU-based design utilizes parallel hardware of GPU to perform computations and thus is able to overcome the major limitation of prior hardware-based approaches by having the capability of handling thousands of processes and resources, whilst achieving real-world run-times. By utilizing a bit-vector technique for storing algorithm ma- trices and designing novel, efficient algorithmic methods, we not only reduce memory usage dramatically but also achieve two orders of magnitude speedup over CPU equivalents. Additionally, GPU-OSDDA acts as an interactive service to the CPU, because all of the aforementioned computations and matrix management techniques take place on the GPU, requiring minimal interaction with the CPU. GPU-OSDDA is implemented on three GPU cards: Tesla C2050, Tesla K20c, and Titan X. Our design shows overall speedups of 6-595X over CPU equivalents.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University