- Browse by Subject
Browsing by Subject "renal transplantation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10(Elsevier, 2016-12) Wang, Xiaoliang; Wang, Hongwei; Shen, Bing; Overholser, Brian R.; Cooper, Bruce R.; Lu, Yinghao; Tang, Huamei; Zhou, Chongzhi; Sun, Xing; Zhong, Lin; Favus, Murray J.; Decker, Brian S.; Liu, Wanqing; Peng, Zhihai; Department of Medicine, IU School of MedicineMycophenolic acid (MPA) is an important immunosuppressant broadly used in renal transplantation. However, the large inter-patient variability in mycophenolic acid (MPA) pharmacokinetics (PK) limits its use. We hypothesize that extrahepatic metabolism of MPA may have significant impact on MPA PK variability. Two intestinal UDP-glucuronosyltransferases 1A8 and 1A10 plays critical role in MPA metabolism. Both in silico and previous genome-wide analyses suggested that vitamin D (VD) may regulate intestinal UGT1A expression. We validated the VD response elements (VDREs) across the UGT1A locus with chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The impact of 1-alpha,25-dihydroxyvitamin D3 (D3) on UGT1A8 and UGT1A10 transcription and on MPA glucuronidation was tested in human intestinal cell lines LS180, Caco-2 and HCT-116. The correlation between transcription levels of VD receptor (VDR) and the two UGT genes were examined in human normal colorectal tissue samples (n = 73). PK alterations of MPA following the parent drug, mycophenolate mofetil (MMF), and D3 treatment was assessed among renal transplant recipients (n = 10). Our ChIP assay validate three VDREs which were further demonstrated as transcriptional enhancers with the luciferase assays. D3 treatment significantly increased transcription of both UGT genes as well as MPA glucuronidation in cells. The VDR mRNA level was highly correlated with that of both UGT1A8 and UGT1A10 in human colorectal tissue. D3 treatment in patients led to about 40% reduction in both AUC0-12 and Cmax while over 70% elevation of total clearance of MPA. Our study suggested a significant regulatory role of VD on MPA metabolism and PK via modulating extrahepatic UGT activity.Item Epidemiology of parvovirus B19 and anemia among kidney transplant recipients: A meta-analysis(Wolters Kluwer, 2020-06-10) Thongprayoon, Charat; Khoury, Nadeen J.; Bathini, Tarun; Aeddula, Narothama Reddy; Boonpheng, Boonphiphop; Lertjitbanjong, Ploypin; Watthanasuntorn, Kanramon; Leeaphorn, Napat; Chesdachai, Supavit; Torres-Ortiz, Aldo; Kaewput, Wisit; Bruminhent, Jackrapong; Mao, Michael A.; Cheungpasitporn, Wisit; Medicine, School of MedicineBackground: Persistent anemia has been described in kidney transplant (KTx) recipients with parvovirus B19 virus infection. However, the epidemiology of parvovirus B19 and parvovirus B19-related anemia after KTx remains unclear. We conducted this systematic review (1) to investigate the incidence of parvovirus B19 infection after KTx and (2) to assess the incidence of parvovirus B19 among KTx patients with anemia. Materials and Methods: A systematic review was conducted in EMBASE, MEDLINE, and Cochrane databases from inception to March 2019 to identify studies that reported the incidence rate of parvovirus B19 infection and/or seroprevalence of parvovirus B19 in KTx recipients. Effect estimates from the individual studies were extracted and combined using random-effects, generic inverse variance method of DerSimonian and Laird. The protocol for this systematic review is registered with PROSPERO (no. CRD42019125716). Results: Nineteen observational studies with a total of 2108 KTx patients were enrolled. Overall, the pooled estimated seroprevalence of parvovirus B19 immunoglobulin G was 62.2% (95% confidence interval [CI]: 45.8%–76.1%). The pooled estimated incidence rate of positive parvovirus B19 DNA in the 1st year after KTx was 10.3% (95% CI: 5.5%–18.4%). After sensitivity analysis excluded a study that solely included KTx patients with anemia, the pooled estimated incidence rate of positive parvovirus B19 DNA after KTx was 7.6% (95% CI: 3.7%–15.0%). Among KTx with anemia, the pooled estimated incidence rate of positive parvovirus B19 DNA was 27.4% (95% CI: 16.6%–41.7%). Meta-regression analysis demonstrated no significant correlations between the year of study and the incidence rate of positive parvovirus B19 DNA (P = 0.33). Egger's regression asymmetry test was performed and demonstrated no publication bias in all analyses. Conclusion: The overall estimated incidence of positive parvovirus B19 DNA after KTX is 10.3%. Among KTx with anemia, the incidence rate of positive parvovirus B19 DNA is 27.4%. The incidence of positive parvovirus B19 DNA does not seem to decrease overtime.