- Browse by Subject
Browsing by Subject "redox"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation(2001-05) Hsieh, Marlene M.; Hegde, Vijay; Kelley, Mark R.; Deutsch, Walter A.Reactive oxygen species (ROS) arise through normal cellular aerobic respiration, and, in combination with external sources such as ionizing radiation, cigarette tar and smoke, and particulate matter generated by combustion, can have a profound negative effect on cellular macromolecules such as DNA that may lead to a number of human pathological disorders including accelerated aging and cancer. A major end product of ROS damage to DNA is the formation of apurinic/apyrimidinic (AP) sites, which without removal are known to halt mRNA and DNA synthesis, or act as non-coding lesions resulting in the increased generation of DNA mutations. In human cells, the major enzyme in correcting the deleterious effects of AP sites in DNA is through the participation of AP endonuclease (APE), which initiates the removal of baseless sites in DNA through the catalytic scission of the phosphodiester bond 5′ and adjacent to an AP site. Interestingly, APE also possesses an activity (Ref-1) that controls the redox status of a number of transcription factors including Fos and Jun. The means by which APE/Ref-1 is directed to carry out such disparate roles are unknown. The presence of a number of phosphorylation sites scattered throughout both functional domains of APE/Ref-1 however offered one possible mechanism that we reasoned could play a role in dictating how this protein responds to different stimuli. Here we show that the in vitro redox activity of APE/Ref-1 is stimulated by PKC phosphorylation. Furthermore, when human cells were exposed to the PKC activator phorbol 12-myristate 13-acetate, an increase in redox activity was observed that corresponded to an increase in the phosphorylation status of APE/Ref-1. Importantly, human cells exposed to the oxidizing agent hypochlorite, followed by methyl methanesulfanate, responded with an increase in redox activity by APE/Ref-1 that also involved an increase in PKC activity and a corresponding increase in the phosphorylation of APE/Ref-1. These results suggest that the ability of APE/Ref-1 to perform its in vivo redox function is correlated to its susceptibility to PKC phosphorylation that notably occurs in response to DNA damaging agents.Item Characterization of the redox activity and disulfide bond formation in Apurinic/apyrimidinic endonuclease(2012-01) Luo, Meihua; Zhang, Jun; He, Hongzhen; Su, Dian; Chen, Qiujia; Gross, Michael L.; Kelley, Mark R.; Georgiadis, Millie M.Apurinic/apyrimidinic endonuclease (APE1) is an unusual nuclear redox factor in which the redox-active cysteines identified to date, C65 and C93, are surface inaccessible residues whose activities may be influenced by partial unfolding of APE1. To assess the role of the five remaining cysteines in APE1’s redox activity, double-cysteine mutants were analyzed, excluding C65A, which is redox-inactive as a single mutant. C93A/C99A APE1 was found to be redox-inactive, whereas other double-cysteine mutants retained the same redox activity as that observed for C93A APE1. To determine whether these three cysteines, C65, C93, and C99, were sufficient for redox activity, all other cysteines were substituted with alanine, and this protein was shown to be fully redox-active. Mutants with impaired redox activity failed to stimulate cell proliferation, establishing an important role for APE1’s redox activity in cell growth. Disulfide bond formation upon oxidation of APE1 was analyzed by proteolysis of the protein followed by mass spectrometry analysis. Within 5 min of exposure to hydrogen peroxide, a single disulfide bond formed between C65 and C138 followed by the formation of three additional disulfide bonds within 15 min; 10 total disulfide bonds formed within 1 h. A single mixed-disulfide bond involving C99 of APE1 was observed for the reaction of oxidized APE1 with thioredoxin (TRX). Disulfide-bonded APE1 or APE1–TRX species were further characterized by size exclusion chromatography and found to form large complexes. Taken together, our data suggest that APE1 is a unique redox factor with properties distinct from those of other redox factors.Item Design and Synthesis of Novel Quinone Inhibitors Targeted to the Redox Function of Apurinic/Apyrimidinic Endonuclease 1/Redox Enhancing Factor-1 (Ape1/Ref-1)(2010-02) Nyland II, Rodney L.; Luo, Meihua; Kelley, Mark R.; Borch, Richard F.The multifunctional enzyme apurinic endonuclease 1/redox enhancing factor 1 (Ape1/ref-1) maintains genetic fidelity through the repair of apurinic sites and regulates transcription through redox-dependent activation of transcription factors. Ape1 can therefore serve as a therapeutic target in either a DNA repair or transcriptional context. Inhibitors of the redox function can be used as either therapeutics or novel tools for separating the two functions for in vitro study. Presently there exist only a few compounds that have been reported to inhibit Ape1 redox activity; here we describe a series of quinones that exhibit micromolar inhibition of the redox function of Ape1. Benzoquinone and naphthoquinone analogues of the Ape1-inhibitor E3330 were designed and synthesized to explore structural effects on redox function and inhibition of cell growth. Most of the naphthoquinones were low micromolar inhibitors of Ape1 redox activity, and the most potent analogues inhibited tumor cell growth with IC50 values in the 10−20 μM range.Item Evolution of the redox function in mammalian Apurinic/ apyrimidinic endonuclease(2008-08) Georgiadis, Millie M.; Luo, Meihua; Gaur, R K.; Delaplane, Sarah; Li, X.; Kelley, Mark R.Human apurinic/apyrimidinic endonuclease (hApe1) encodes two important functional activities: an essential base excision repair (BER) activity and a redox activity that regulates expression of a number of genes through reduction of their transcription factors, AP-1, NFκB, HIF-1α, CREB, p53 and others. The BER function is highly conserved from prokaryotes (E. coli exonuclease III) to humans (hApe1). Here, we provide evidence supporting a redox function unique to mammalian Apes. An evolutionary analysis of Ape sequences reveals that, of the 7 Cys residues, Cys 93, 99, 208, 296, and 310 are conserved in both mammalian and non-mammalian vertebrate Apes, while Cys 65 is unique to mammalian Apes. In the zebrafish Ape (zApe), selected as the vertebrate sequence most distant from human, the residue equivalent to Cys 65 is Thr 58. The wild-type zApe enzyme was tested for redox activity in both in vitro EMSA and transactivation assays and found to be inactive, similar to C65A hApe1. Substitution of Thr 58 with Cys in zApe, however, resulted in a redox active enzyme, suggesting that a Cys residue in this position is indeed critical for redox function. In order to further probe differences between redox active and inactive enzymes, we have determined the crystal structures of vertebrate redox inactive enzymes, the C65A human Ape1 enzyme and the zApe enzyme at 1.9 and 2.3 Å, respectively. Our results provide new insights on the redox function and highlight a dramatic gain-of-function activity for Ape1 in mammals not found in non-mammalian vertebrates or lower organisms.Item Inhibition of Apurinic/apyrimidinic endonuclease I’s redox activity revisited(2013-04) Zhang, Jun; Luo, Meihua; Marasco, Daniela; Logsdon, Derek; LaFavers, Kaice A.; Chen, Qiujia; Reed, April; Kelley, Mark R.; Gross, Michael L.; Georgiadis, Millie M.The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen–deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 μM are required to inhibit APE1’s endonuclease activity. To determine the role of E3330’s negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1’s redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC50 values (8.5 and 7 μM) lower than those produced with E3330 (20 and 55 μM, respectively). Thus, E3330’s negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.Item Inhibition of the Redox Function of APE1/Ref-1 in Myeloid Leukemia Cell Lines Results in a Hypersensitive Response to Retinoic Acid-induced Differentiation and Apoptosis(2010-12) Fishel, Melissa L.; Colvin, E Scott; Luo, Meihua; Kelley, Mark R.; Robertson, Kent A.Objective The standard of care for promyelocytic leukemia includes use of the differentiating agent all-trans retinoic acid (RA) and chemotherapy. RA induces cell differentiation through retinoic acid receptor (RAR) transcription factors. Because redox mechanisms influence how readily transcription factors bind to DNA response elements (RARE), the impact of small molecule (E3330) inhibition of the redox regulatory protein, apurinic-apyrimidinic endonuclease/redox effector factor (APE1/Ref-1) on RAR DNA binding and function in RA-induced myeloid leukemia cell differentiation and apoptosis was investigated. Materials and Methods The redox function of APE1 was studied using the small molecule inhibitor E3330 in HL-60 and PLB acute myeloid leukemia cells. Electrophoretic mobility shift assays were employed to determine effect of inhibitor on APE1/Ref-1 redox signaling function. Trypan blue assays, Annexin-V/propidium iodide and CD11b staining, and real-time polymerase chain reaction analyses were employed to determine survival, apoptosis, and differentiation status of cells in culture. Results RARα binds to its RARE in a redox-dependent manner mediated by APE1/Ref-1 redox regulation. Redox-dependent RAR-RARE binding is blocked by E3330, a small molecule redox inhibitor of APE1/Ref-1. Combination treatment of RA + E3330 results in a profound hypersensitivity of myeloid leukemia cells to RA-induced differentiation and apoptosis. Additionally, redox inhibition by E3330 results in enhanced RAR target gene, BLR-1, expression in myeloid leukemia cells. Conclusions The redox function of APE1/Ref-1 regulates RAR binding to its DNA RAREs influencing the response of myeloid leukemia cells to RA-induced differentiation. Targeting of APE1/Ref-1 redox function may allow manipulation of the retinoid response with therapeutic implications.Item Interactions of APE1 with a redox inhibitor: Evidence for an alternate conformation of the enzyme(2011-01) Su, Dian; Delaplane, Sarah; Luo, Meihua; Rempel, Don L.; Vu, Bich; Kelley, Mark R.; Gross, Michael L.; Georgiadis, Millie M.Apurinic/apyrimidinic endonuclease (APE1) is an essential base excision repair protein that also functions as a reduction and oxidation (redox) factor in mammals. Through a thiol-based mechanism, APE1 reduces a number of important transcription factors, including AP-1, p53, NF-κB, and HIF-1α. What is known about the mechanism to date is that the buried residues Cys 65 and Cys 93 are critical for APE1’s redox activity. To further detail the redox mechanism, we developed a chemical footprinting−mass spectrometric assay using N-ethylmaleimide (NEM), an irreversible Cys modifier, to characterize the interaction of the redox inhibitor, E3330, with APE1. When APE1 was incubated with E3330, two NEM-modified products were observed, one with two and a second with seven added NEMs; this latter product corresponds to a fully modified APE1. In a similar control reaction without E3330, only the +2NEM product was observed in which the two solvent-accessible Cys residues, C99 and C138, were modified by NEM. Through hydrogen−deuterium amide exchange with analysis by mass spectrometry, we found that the +7NEM-modified species incorporates approximately 40 more deuterium atoms than the native protein, which exchanges nearly identically as the +2NEM product, suggesting that APE1 can be trapped in a partially unfolded state. E3330 was also found to increase the extent of disulfide bond formation involving redox critical Cys residues in APE1 as assessed by liquid chromatography and tandem mass spectrometry, suggesting a basis for its inhibitory effects on APE1’s redox activity. Collectively, our results suggest that APE1 adopts a partially unfolded state, which we propose is the redox active form of the enzyme.Item What Can Cellular Redox, Iron, and Reactive Oxygen Species Suggest About the Mechanisms and Potential Therapy of COVID-19?(Frontiers, 2020-12) Muhoberac, Barry B.; Chemistry and Chemical Biology, School of ScienceAccumulating evidence suggests that there are important contributions to coronavirus disease (COVID-19) from redox imbalance and improperly coordinated iron, which cause cellular oxidative damage and stress. Cells have developed elaborate redox-dependent processes to handle and store iron, and their disfunction leads to several serious diseases. Cellular reductants are important as reactive oxygen species (ROS) scavengers and to power enzymatic repair mechanisms, but they also may help generate toxic ROS. These complicated interrelationships are presented in terms of a cellular redox/iron/ROS triad, including ROS generation both at improperly coordinated iron and enzymatically, ROS interconvertibility, cellular signaling and damage, and reductant and iron chelator concentration-dependent effects. This perspective provides the rational necessary to strongly suggest that COVID-19 disrupts this interdependent triad, producing a substantial contribution to the ROS load, which causes direct ROS-induced protein and phospholipid damage, taxes cellular resources and repair mechanisms, and alters cellular signaling, especially in the more critical acute respiratory distress syndrome (ARDS) phase of the infection. Specific suggestions for therapeutic interventions using reductants and chelators that may help treat COVID-19 are discussed.