- Browse by Subject
Browsing by Subject "pulmonary dysfunction"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pulmonary Dysfunction in Patients with Femoral Shaft Fracture Treated with Intramedullary Nailing(2001-08) Norris, Brent L; Patton, W Christopher; Rudd, Joseph N Jr; Schmitt, Colleen M; Kline, Jeffrey A.Background: This study was undertaken to determine whether alveolar dead space increases during intramedullary nailing of femoral shaft fractures and whether alveolar dead space predicts postoperative pulmonary dysfunction in patients undergoing intramedullary nailing of a femoral shaft fracture. Methods: All patients with a femoral shaft fracture were prospectively enrolled in the study unless there was evidence of acute myocardial infarction, shock, or heart failure. Arterial blood gases were measured at three consecutive time-periods after induction of general anesthesia: before intramedullary nailing and ten and thirty minutes after intramedullary nailing. The end-tidal carbon-dioxide level, minute ventilation, positive end‐expiratory pressure, and percent of inspired and expired inhalation agent were recorded simultaneously with the blood-gas measurement. Postoperatively, all subjects were monitored for evidence of pulmonary dysfunction, defined as the need for mechanical ventilation or supplemental oxygen (at a fraction of inspired oxygen of >40%) in the presence of clinical signs of a respiratory rate of >20 breaths/min or the use of accessory muscles of respiration. Results: Seventy‐four patients with a total of eighty femoral shaft fractures completed the study. Fifty fractures (62.5%) underwent nailing after reaming, and thirty fractures (37.5%) underwent nailing with minimal or no reaming. The mean alveolar dead-space measurements before canal opening and at ten and thirty minutes after canal opening were 14.5%, 15.8%, and 15.2% in the total series of seventy‐four patients (general linear model, p = 0.2) and 20.5%, 22.7%, and 24.2% in the twenty patients with postoperative pulmonary dysfunction (general linear model, p = 0.05). Of the twenty‐one patients with an alveolar dead-space measurement of >20% thirty minutes after nailing, sixteen had postoperative pulmonary dysfunction. According to univariate and multivariate analysis, the alveolar dead-space measurement was strongly associated with postoperative pulmonary dysfunction. Conclusions: According to our data, intramedullary nailing of femoral shaft fractures did not significantly increase alveolar dead space, and the amount of alveolar dead space can predict which patients will have pulmonary dysfunction postoperatively.Item Sleep and pulmonary outcomes for clinical trials of airway plexiform neurofibromas in NF1(AAN, 2016-08) Plotkin, Scott R.; Davis, Stephanie D.; Robertson, Kent A.; Akshintala, Srivandana; Allen, Julian; Fisher, Michael J.; Blakely, Jaishri O.; Widemann, Brigitte C.; Ferner, Rosalie E.; Marcus, Carole L.; Department of Pediatrics, School of MedicineObjective: Plexiform neurofibromas (PNs) are complex, benign nerve sheath tumors that occur in approximately 25%–50% of individuals with neurofibromatosis type 1 (NF1). PNs that cause airway compromise or pulmonary dysfunction are uncommon but clinically important. Because improvement in sleep quality or airway function represents direct clinical benefit, measures of sleep and pulmonary function may be more meaningful than tumor size as endpoints in therapeutic clinical trials targeting airway PN. Methods: The Response Evaluation in Neurofibromatosis and Schwannomatosis functional outcomes group reviewed currently available endpoints for sleep and pulmonary outcomes and developed consensus recommendations for response evaluation in NF clinical trials. Results: For patients with airway PNs, polysomnography, impulse oscillometry, and spirometry should be performed to identify abnormal function that will be targeted by the agent under clinical investigation. The functional group endorsed the use of the apnea hypopnea index (AHI) as the primary sleep endpoint, and pulmonary resistance at 10 Hz (R10) or forced expiratory volume in 1 or 0.75 seconds (FEV1 or FEV0.75) as primary pulmonary endpoints. The group defined minimum changes in AHI, R10, and FEV1 or FEV0.75 for response criteria. Secondary sleep outcomes include desaturation and hypercapnia during sleep and arousal index. Secondary pulmonary outcomes include pulmonary resistance and reactance measurements at 5, 10, and 20 Hz; forced vital capacity; peak expiratory flow; and forced expiratory flows. Conclusions: These recommended sleep and pulmonary evaluations are intended to provide researchers with a standardized set of clinically meaningful endpoints for response evaluation in trials of NF1-related airway PNs.