- Browse by Subject
Browsing by Subject "protein-protein interactions"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item An atypical role for CRMP-2 in neurotransmitter release via interaction with presynaptic Ca2+ channels(Office of the Vice Chancellor for Research, 2010-04-09) BRITTAIN, J. M.; PIEKARZ, A. D.; PIEKARZ, Y. WANG; GARCIA, A. S.; CUMMINS, T. R.; KHANNA, R.Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca2+ channel (CaV2.2) as a CRMP-2interacting protein. CRMP-2 binds directly to CaV2.2 in two regions; the channel domain I-II intracellular loop and the distal C-terminus, but not to any other regions. Both proteins colocalize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to EGFP caused a significant increase in Ca2+ channel current density whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca2+ current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-EGFP overexpressing neurons elicited a significant increase in release of glutamate compared to control neurons. Toxin block of Ca2+ entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca2+ channel interaction represents a novel mechanism for modulation of Ca2+ influx into nerve terminals and, hence, of synaptic strength.Item Biochemical applications of DsRed-monomer utilizing fluorescence and metal-binding affinity(2011-03-09) Goulding, Ann Marie; Deo, Sapna K.; Oh, Kyungsoo; Davidson, Amy; Simpson, GarthThe discovery and isolation of naturally occurring fluorescent proteins, FPs, have provided much needed tools for molecular and cellular level studies. Specifically the cloning of green fluorescent protein, GFP, revolutionized the field of biotechnology and biochemical research. Recently, a red fluorescent protein, DsRed, isolated from the Discosoma coral has further expanded the pallet of available fluorescent tools. DsRed shares only 23 % amino acid sequence homology with GFP, however the X-ray crystal structures of the two proteins are nearly identical. DsRed has been subjected to a number of mutagenesis studies, which have been found to offer improved physical and spectral characteristics. One such mutant, DsRed-Monomer, with a total of 45 amino acid substitutions in native DsRed, has shown improved fluorescence characteristics without the toxic oligomerization seen for the native protein. In our laboratory, we have demonstrated that DsRed proteins have a unique and selective copper-binding affinity, which results in fluorescence quenching. This copper-binding property was utilized in the purification of DsRed proteins using copper-bound affinity columns. The work presented here has explored the mechanism of copper-binding by DsRed-Monomer using binding studies, molecular biology, and other biochemical techniques. Another focus of this thesis work was to demonstrate the applications of DsRed-Monomer in biochemical studies based on the copper-binding affinity and fluorescence properties of the protein. To achieve this, we have focused on genetic fusions of DsRed-Monomer with peptides and proteins. The work with these fusions have demonstrated the feasibility of using DsRed-Monomer as a dual functional tag, as both an affinity tag and as a label in the development of a fluorescence assay to detect a ligand of interest. Further, a complex between DsRed-Monomer-bait peptide/protein fusion and an interacting protein has been isolated taking advantage of the copper-binding affinity of DsRed-Monomer. We have also demonstrated the use of non-natural amino acid analogues, incorporated into the fluorophore of DsRed-Monomer, as a tool for varying the spectral properties of the protein. These mutations demonstrated not only shifted fluorescence emission compared to the native protein, but also improved extinction coefficients and quantum yields.Item A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein–Protein Interaction Interfaces(ACS, 2017-08) Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Liu, Degang; Ghozayel, Mona; Meroueh, Samy; Biochemistry and Molecular Biology, School of MedicineThe binding affinity of a protein–protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein–protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein–protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein–protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein–protein interactions do not optimally mimic protein–ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.Item MoRFs A Dataset of Molecular Recognition Features(2006-07-26T15:27:43Z) Mohan, Amrita; Dunker, A. KeithThe last decade has witnessed numerous proteomic studies which have predicted and successfully confirmed the existence of extended structurally flexible regions in protein molecules. Parallel to these advancements, the last five years of structural bioinformatics has also experienced an explosion of results on molecular recognition and its importance in protein-protein interactions. This work provides an extension to past and ongoing research efforts by looking specifically at the “flexibility and disorder†found in protein sequences involved in molecular recognition processes and known as, Molecular Recognition Elements or Molecular Recognition Features (MoREs or MoRFs, as we call them). MoRFs are relatively short in length (10 – 70 residues length); loosely structured protein regions within longer sequences that are largely disordered in nature. Interestingly, upon binding to other proteins, these MoRFs are able to undergo disorder-to-order transition. Thus, in our interpretation, MoRFs could serve as potential binding sites, and that this binding to another protein lends a functional advantage to the whole protein complex by enabling interaction with their physiological partner. There are at least three basic types of MoRFs: those that form α-helical structures upon binding, those that form β-strands (in which the peptide forms a β-sheet with additional β-strands provided by the protein partner), and those that form irregular structures when bound. Our proposed names for these structures are α-MoRF (also known as α-MoRE, alpha helical molecular recognition feature/element), β-MoRF (beta sheet molecular recognition feature/element), and I-MoRF (Irregular molecular recognition feature/element), respectively. The results presented in this work suggest that functionally significant residual structure can exist in MoRF regions prior to the actual binding event. We also demonstrate profound conformational preferences within MoRF regions for α-helices. We believe that the results from this study would subsequently improve our understanding of protein-protein interactions especially those related to the molecular recognition, and may pave way for future work on the development of protein binding site predictions. We hope that via the conclusions of this work, we would have demonstrated that within only a few of years of its conception, intrinsic protein disorder has gained wide-scale importance in the field of protein-protein interactions and can be strongly associated with molecular recognition.Item Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein–Protein Interaction(ACS, 2017-03) Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineProtein–protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein–protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein–protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π–cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π–cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein–protein interactions.Item Temperature Sensitive Mutant Proteome Profiling (TeMPP) A Tool for the Characterization of Global Impacts of Missense Mutations on the Proteome(2020-07) Justice, Sarah Ann; Mosley, Amber L.; Harrington, Maureen A.; Goebl, Mark G.; Bidwell, Joseph P.Thousands of missense mutations have been found to be associated with human diseases, ~60% of which have been predicted to affect protein stability and/or protein-protein interactions (PPIs). Current proteomic methods for studying the effects of mutations on the cell focus on measures of protein abundance or post-translational modifications (PTMs), which cannot directly be used for PPI analysis. High-throughput methodology to evaluate how mutations in a single protein affect PPI networks would help streamline the characterization of global effects caused by mutant proteins and aid in the prediction of phenotypic outcomes resulting from genomic mutations. Temperature sensitive Mutant Proteome Profiling (TeMPP) is a novel application of a mass spectrometry (MS) based thermal proteome profiling (TPP) approach that measures changes in missense mutant containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. This study measures the impact of temperature sensitivity-inducing missense mutations of proteins in the ubiquitin proteasome system and the transcription termination machinery on the thermal stability of the proteome at large. Results reveal distinct mechanistic details that were not obtained using only steady-state transcriptome and proteome analyses. Furthermore, my data suggests that TeMPP is highly specific to proteins functionally related to the mutated protein of interest and capable of differentiating effects between two proteins in the same complex. Overall, TeMPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, non-biased fashion. Use of this method along with other complementary -omics approaches will help to characterize how missense mutations affect cellular protein homeostasis and thus enable deeper insight into disease phenotypes.