- Browse by Subject
Browsing by Subject "protein stability"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item FASN Negatively Regulates NF-kB/P65 Expression in Breast Cancer Cells by Disrupting Its Stability(2020-02) Barlow, Lincoln James; Lu, Tao; Zhang, Jian-Ting; Fehrenbacher, Jill; Herbert, Brittney-Shea; Safa, AhmadThe overexpression of the multi-domain enzyme fatty acid synthase (FASN) has long been associated with poor clinical prognosis and treatment outcome in various cancers. Previous research in the Zhang lab has determined a role for FASN in mediating increases in non-homologous end-joining (NHEJ) DNA double-strand break repair activity allowing for increased cancer cell survival, and this mechanism was found to involve inhibition of NF-kB/p65. The mechanism responsible for the regulation of NF-kB/p65 by FASN in cancer cells, however, remains unknown. To this end, I was able to determine that FASN negatively regulates both the expression and activity of NF-kB/p65 in breast cancer cells, and that this effect was likely mediated by the 16-carbon saturated fatty acid palmitate, the end product of FASN catalytic activity. Specifically, FASN was found to negatively regulate p65 expression by disrupting its protein stability as a result of an increase in poly-ubiquitination of p65 protein and subsequent proteasomal degradation. Further, I found that the phosphorylation site Thr254 of p65 is involved in the regulation of p65 protein stability by FASN, in that mutation of this residue resulted in a disruption in p65 stability. Finally, I was able to determine that FASN likely inhibits the ability of the peptidyl-prolyl cis/trans isomerase Pin1 to assist in maintaining p65 stability, in that both siRNA knockdown and pharmacological inhibition of Pin1 resulted in a reduction of p65 expression in FASN shRNA knockdown cells. The determination of this signaling mechanism serves to expand our understanding of the role of FASN in breast cancer cells and has the potential to assist in uncovering more effective ways to target the oncogenic FASN pathway to kill breast tumor cells and to overcome resistance to drug treatment.Item USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency(Nature Publishing group, 2016-11-04) Liu, Xingyu; Yao, Yuying; Ding, Huiguo; Han, Chuanchun; Chen, Yuhan; Zhang, Yuan; Wang, Chanjuan; Zhang, Xin; Zhang, Yiling; Zhai, Yun; Wang, Ping; Wei, Wenyi; Zhang, Jing; Zhang, Lingqiang; Microbiology and Immunology, School of MedicineThe homeobox transcription factor Nanog has a vital role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). Stabilization of Nanog proteins is essential for ESCs. The ubiquitin–proteasome pathway mediated by E3 ubiquitin ligases and deubiquitylases is one of the key ways to regulate protein levels and functions. Although ubiquitylation of Nanog catalyzed by the ligase FBXW8 has been demonstrated, the deubiquitylase that maintains the protein levels of Nanog in ESCs yet to be defined. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a deubiquitylase for Nanog, but not for Oct4 or Sox2. USP21 interacts with Nanog protein in ESCs in vivo and in vitro. The C-terminal USP domain of USP21 and the C-domain of Nanog are responsible for this interaction. USP21 deubiquitylates the K48-type linkage of the ubiquitin chain of Nanog, stabilizing Nanog. USP21-mediated Nanog stabilization is enhanced in mouse ESCs and this stabilization is required to maintain the pluripotential state of the ESCs. Depletion of USP21 in mouse ESCs leads to Nanog degradation and ESC differentiation. Overall, our results demonstrate that USP21 maintains the stemness of mouse ESCs through deubiquitylating and stabilizing Nanog.