- Browse by Subject
Browsing by Subject "proteasome assembly"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Investigating the early events in proteasome assembly(2014) Ramamurthy, Aishwarya; Kusmierczyk, Andrew; Atkinson, Simon; Randall, Stephen Karl, 1953-Proteasome assembly is a rapid and highly sequential process that occurs through a series of intermediates. While the quest to understand the exact process of assembly is ongoing, there remains an incomplete understanding of what happens early on during the process, prior to the involvement of the β subunits. A significant feature of proteasome assembly is the property of proteasomal subunits to self-assemble. While archaeal α and β subunits from Thermoplasma acidophilum can assemble into entire 20S units in vitro, certain α subunits from divergent species have a property to self-assemble into single and double heptameric rings. In this study, we have shown that recombinant α subunits from Methanococcus maripaludis also have a tendency to self-assemble into higher order structures when expressed in E. coli. Using a novel cross-linking strategy, we were able to establish that these higher order structures were double α rings that are structurally similar to a half-proteasome (i.e. an α-β ring pair). Our experiments on M. maripaludis α subunits represent the first biochemical evidence for the orientation of rings in an α ring dimer. We also investigated self-assembly of α subunits in S. cerevisiae and attempted to characterize a highly stable and unique high molecular weight complex (HMWC) that is formed upon co-expression of α5, α6, α7 and α1 in E. coli. Using our cross-linking strategy, we were able to show that this complex is a double α ring in which, at the least, one α1 subunit is positioned across itself. We were also able to detect α1-α1 crosslinks in high molecular weight complexes that are formed when α7 and α1 are co-expressed, and when α6, α7 and α1 are co-expressed in E. coli. The fact that we able to observe α1-α1 crosslinks in higher order structures that form whenever α7 and α1 were present suggests that α1-α1 crosslinks might be able to serve as potential trackers to detect HMWCs in vivo. This would be an important step in determining if these HMWCs represent bona fide assembly intermediates, or dead-end complexes whose formation must be prevented in order to ensure efficient proteasome assembly.Item Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis(Springer, 2017-02) Howell, Lauren A.; Tomko, Robert J., Jr.; Kusmierczyk, Andrew R.; Biology, School of ScienceBackground The 26S proteasome is at the heart of the ubiquitin-proteasome system, which is the key cellular pathway for the regulated degradation of proteins and enforcement of protein quality control. The 26S proteasome is an unusually large and complicated protease comprising a 28-subunit core particle (CP) capped by one or two 19-subunit regulatory particles (RP). Multiple activities within the RP process incoming ubiquitinated substrates for eventual degradation by the barrel-shaped CP. The large size and elaborate architecture of the proteasome have made it an exceptional model for understanding mechanistic themes in macromolecular assembly. Objective In the present work, we highlight the most recent mechanistic insights into proteasome assembly, with particular emphasis on intrinsic and extrinsic factors regulating proteasome biogenesis. We also describe new and exciting questions arising about how proteasome assembly is regulated and deregulated in normal and diseased cells. Methods A comprehensive literature search using the PubMed search engine was performed, and key findings yielding mechanistic insight into proteasome assembly were included in this review. Results Key recent studies have revealed that proteasome biogenesis is dependent upon intrinsic features of the subunits themselves as well as extrinsic factors, many of which function as dedicated chaperones. Conclusion Cells rely on a diverse set of mechanistic strategies to ensure the rapid, efficient, and faithful assembly of proteasomes from their cognate subunits. Importantly, physiological as well as pathological changes to proteasome assembly are emerging as exciting paradigms to alter protein degradation in vivo.