- Browse by Subject
Browsing by Subject "prostaglandin E2"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Effects of biomechanical forces on signaling in the cortical collecting duct (CCD)(American Physiological Society (APS), 2014-07-15) Carrisoza-Gaytan, Rolando; Liu, Yu; Flores, Daniel; Else, Cindy; Lee, Heon Goo; Rhodes, George; Sandoval, Ruben M.; Kleyman, Thomas R.; Lee, Francis Young-In; Molitoris, Bruce; Satlin, Lisa M.; Rohatgi, Rajeev; Department of Medicine, IU School of MedicineAn increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm2 of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD.Item Estrogen receptor-β regulates mechanical signaling in primary osteoblasts(American Physiological Society (APS), 2014-04-15) Castillo, Alesha B.; Triplett, Jason W.; Pavalko, Fredrick M.; Turner, Charles H.; Department of Cellular & Integrative Physiology, IU School of MedicineMechanical loading is an important regulator in skeletal growth, maintenance, and aging. Estrogen receptors have a regulatory role in mechanically induced bone adaptation. Estrogen receptor-α (ERα) is known to enhance load-induced bone formation, whereas ERβ negatively regulates this process. We hypothesized that ERβ regulates mechanical signaling in osteoblasts. We tested this hypothesis by subjecting primary calvarial cells isolated from wild-type and ERβ-knockout mice (BERKO) to oscillatory fluid flow in the absence or presence of estradiol (E2). We found that the known responses to fluid shear stress, i.e., phosphorylation of the mitogen-activated protein kinase ERK and upregulation of COX-2 expression, were inhibited in BERKO cells in the absence of E2. Flow-induced increase in prostaglandin E2 (PGE2) release was not altered in BERKO cells in the absence of E2, but was increased when E2 was present. Additionally, immunofluorescence analysis and estrogen response element luciferase assays revealed increased ERα expression and flow- and ligand-induced nuclear translocation as well as transcriptional activity in BERKO cells in both the presence and absence of E2. Taken together, these data suggest that ERβ plays both ligand-dependent and ligand-independent roles in mechanical signaling in osteoblasts. Furthermore, our data suggest that one mechanism by which ERβ regulates mechanotransduction in osteoblasts may result from its inhibitory effect on ERα expression and function. Targeting estrogen receptors (e.g., inhibiting ERβ) may represent an effective approach for prevention and treatment of age-related bone loss.Item Mechanisms of the downregulation of prostaglandin E₂-activated protein kinase A after chronic exposure to nerve growth factor or prostaglandin E₂(2013-10-07) Malty, Ramy Refaat Habashy; Vasko, Michael R.; Brustovetsky, Nickolay; Cummins, Theodore R.; Hudmon, Andy; Nicol, Grant D.Chronic inflammatory disorders are characterized by an increase in excitability of small diameter sensory neurons located in dorsal root ganglia (DRGs). This sensitization of neurons is a mechanism for chronic inflammatory pain and available therapies have poor efficacy and severe adverse effects when used chronically. Prostaglandin E₂ (PGE₂) is an inflammatory mediator that plays an important role in sensitization by activating G-protein coupled receptors (GPCRs) known as E-series prostaglandin receptors (EPs) coupled to the protein kinase A (PKA) pathway. EPs are known to downregulate upon prolonged exposure to PGE₂ or in chronic inflammation, however, sensitization persists and the mechanism for this is unknown. I hypothesized that persistence of PGE₂-induced hypersensitivity is associated with a switch in signaling caused by prolonged exposure to PGE₂ or the neurotrophin nerve growth factor (NGF), also a crucial inflammatory mediator. DRG cultures grown in the presence or absence of either PGE₂ or NGF were used to study whether re-exposure to the eicosanoid is able to cause sensitization and activate PKA. When cultures were grown in the presence of NGF, PGE₂-induced sensitization was not attenuated by inhibitors of PKA. Activation of PKA by PGE₂ was similar in DRG cultures grown in the presence or absence of NGF when phosphatase inhibitors were added to the lysis and assay buffers, but significantly less in cultures grown in the presence of NGF when phosphatase inhibitors were not added. In DRG cultures exposed to PGE₂ for 12 hours-5 days, sensitization after re-exposure to PGE₂ is maintained and resistant to PKA inhibition. Prolonged exposure to the eicosanoid caused complete loss of PKA activation after PGE₂ re-exposure. This desensitization was homologous, time dependent, reversible, and insurmountable by a higher concentration of PGE₂. Desensitization was attenuated by reduction of expression of G-protein receptor kinase 2 and was not mediated by PKA or protein kinase C. The presented work provides evidence for persistence of sensitization by PGE₂ as well as switch from the signaling pathway mediating this sensitization after long-term exposure to NFG or PGE₂.Item Pancreatic Fluid Interleukin-1β Complements Prostaglandin E2 and Serum Carbohydrate Antigen 19-9 in Prediction of Intraductal Papillary Mucinous Neoplasm Dysplasia(Wolters Kluwer, 2019-09-01) Simpson, Rachel E.; Yip-Schneider, Michele T.; Flick, Katelyn F.; Wu, Huangbing; Colgate, Cameron L.; Schmidt, C. Max; Surgery, School of MedicineObjectives: We sought to determine if interleukin (IL)-1β and prostaglandin E2 (PGE2) (inflammatory mediators in pancreatic fluid) together with serum carbohydrate antigen (CA) 19–9 could better predict intraductal papillary mucinous neoplasm (IPMN) dysplasia than individual biomarkers alone. Methods: Pancreatic cyst fluid (n = 92) collected via endoscopy or surgery (2003–2016) was analyzed for PGE2 and IL-1β (Enzyme-Linked Immunosorbent Assay). Patients had surgical pathology-proven IPMN. Threshold values (PGE2 [>1100 pg/mL], IL-1β [>20 pg/mL], serum CA 19–9 [>36 U/mL]) were determined. Results: Levels of IL-1β were higher in high-grade (HGD)/Invasive-IPMN (n = 42) compared to Low/Moderate-IPMN (n = 37) (median [range], 54.6 [0–2671] vs 5.9 [0–797] pg/mL; P < 0.001; Area Under Curve [AUC], 0.766). Similarly, PGE2 was higher in HGD/Invasive-IPMN (n = 45) compared to Low/Moderate-IPMN (n = 47) (median [range], 1790 [20–15,180] vs. 140 [10–14,630] pg/mL; P < 0.001; AUC, 0.748). Presence of elevated PGE2 and IL-1β (AUC, 0.789) provided 89% specificity and 82% positive predictive value (PPV) for HGD/Invasive-IPMN. Elevated levels of all three provided 100% Specificity and PPV for HGD/Invasive-IPMN. Conclusion: Cyst fluid PGE2, IL-1β, and serum CA 19–9 in combination optimize specificity and PPV for HGD/Invasive-IPMN and may help build a panel of markers to predict IPMN dysplasia.Item Prostaglandin E₂ promotes recovery of hematopoietic stem and progenitor cells after radiation exposure(2014-07-11) Stilger, Kayla N.; Broxmeyer, Hal E.; Kacena, Melissa A.; Srour, Edward F.; Pelus, LouisThe hematopoietic system is highly proliferative, making hematopoietic stem and progenitor cells (HSPC) sensitive to radiation damage. Total body irradiation and chemotherapy, as well as the risk of radiation accident, create a need for countermeasures that promote recovery of hematopoiesis. Substantive damage to the bone marrow from radiation exposure results in the hematopoietic syndrome of the acute radiation syndrome (HS-ARS), which includes life-threatening neutropenia, lymphocytopenia, thrombocytopenia, and possible death due to infection and/or hemorrhage. Given adequate time to recover, expand, and appropriately differentiate, bone marrow HSPC may overcome HS-ARS and restore homeostasis of the hematopoietic system. Prostaglandin E2 (PGE2) is known to have pleiotropic effects on hematopoiesis, inhibiting apoptosis and promoting self-renewal of hematopoietic stem cells (HSC), while inhibiting hematopoietic progenitor cell (HPC) proliferation. We assessed the radiomitigation potential of modulating PGE2 signaling in a mouse model of HS-ARS. Treatment with the PGE2 analog 16,16 dimethyl PGE2 (dmPGE2) at 24 hours post-irradiation resulted in increased survival of irradiated mice compared to vehicle control, with greater recovery in HPC number and colony-forming potential measured at 30 days post-irradiation. In a sublethal mouse model of irradiation, dmPGE2-treatment at 24 hours post-irradiation is associated with enhanced recovery of HSPC populations compared to vehicle-treated mice. Furthermore, dmPGE2-treatment may also act to promote recovery of the HSC niche through enhancement of osteoblast-supporting megakaryocyte (MK) migration to the endosteal surface of bone. A 2-fold increase in MKs within 40 um of the endosteum of cortical bone was seen at 48 hours post-irradiation in mice treated with dmPGE2 compared to mice treated with vehicle control. Treatment with the non-steroidal anti-inflammatory drug (NSAID) meloxicam abrogated this effect, suggesting an important role for PGE2 signaling in MK migration. In vitro assays support this data, showing that treatment with dmPGE2 increases MK expression of the chemokine receptor CXCR4 and enhances migration to its ligand SDF-1, which is produced by osteoblasts. Our results demonstrate the ability of dmPGE2 to act as an effective radiomitigative agent, promoting recovery of HSPC number and enhancing migration of MKs to the endosteum where they play a valuable role in niche restoration.