- Browse by Subject
Browsing by Subject "pharmacogenetics"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A Call for Clear and Consistent Communications Regarding the Role of Pharmacogenetics in Antidepressant Pharmacotherapy(Wiley, 2020-01) Hicks, J. Kevin; Bishop, Jeffrey R.; Gammal, Roseann S.; Sangkuhl, Katrin; Bousman, Chad; Leeder, J. Steven; Llerena, Adrián; Mueller, Daniel J.; Ramsey, Laura B.; Scott, Stuart A.; Skaar, Todd C.; Caudle, Kelly E.; Klein, Teri E.; Gaedigk, Andrea; Medicine, School of MedicineItem Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy(Wiley, 2019-04-21) Desta, Zeruesenay; Gammal, Roseann S.; Gong, Li; Whirl-Carrillo, Michelle; Gaur, Aditya H.; Sukasem, Chonlaphat; Hockings, Jennifer; Myers, Alan; Swart, Marelize; Tyndale, Rachel F.; Masimirembwa, Collen; Iwuchukwu, Otito F.; Chirwa, Sanika; Lennox, Jeffrey; Gaedigk, Andrea; Klein, Teri E.; Haas, David W.; Medicine, School of MedicineThe human immunodeficiency virus (HIV) type-1 non-nucleoside reverse transcriptase inhibitor, efavirenz, is widely used to treat HIV-1 infection. Efavirenz is predominantly metabolized into inactive metabolites by CYP2B6, and patients with certain CYP2B6 genetic variants may be at increased risk for adverse effects, particularly central nervous system toxicity and treatment discontinuation. We summarize the evidence from the literature and provide therapeutic recommendations for efavirenz prescribing based on CYP2B6 genotypes.Item CYP2D6 drug-gene and drug-drug-gene interactions among patients prescribed pharmacogenetically actionable opioids(Elsevier, 2017-12) Knisely, Mitchell R.; Carpenter, Janet S.; Burke Draucker, Claire; Skaar, Todd C.; Broome, Marion E.; Holmes, Ann M.; Von Ah, Diane; School of NursingPurpose When codeine and tramadol are used for pain management, it is imperative that nurses are able to assess for potential drug-gene and drug-drug-gene interactions that could adversely impact drug metabolism and ultimately pain relief. Both drugs are metabolized through the CYP2D6 metabolic pathway which can be affected by medications as well the patient's own pharmacogenotype. The purpose of this brief report is to identify drug-gene and drug-drug-gene interactions in 30 adult patients prescribed codeine or tramadol for pain. Methods We used three data sources: (1) six months of electronic health record data on the number and types of medications prescribed to each patient; (2) each patient's CYP2D6 pharmacogenotype, and (3) published data on known CYP2D6 gene-drug and drug-drug-gene interactions. Results Ten patients (33%) had possible drug-gene or drug-drug-gene interactions. Five patients had CYP2D6 drug-gene interactions indicating they were not good candidates for codeine or tramadol. In addition, five patients had potential CYP2D6 drug-drug-gene interactions with either codeine or tramadol. Conclusion Our findings from this exploratory study underscores the importance of assessing and accounting for drug-gene and drug-drug-gene interactions in patients prescribed codeine or tramadol.Item Evaluating the extent of reusability of CYP2C19 genotype data among patients genotyped for antiplatelet therapy selection(Nature, 2020-11) Beitelshees, Amber L.; Stevenson, James M.; El Rouby, Nihal; Dillon, Chrisly; Empey, Philip E.; Fielstein, Elliot M.; Johnson, Julie A.; Limdi, Nita A.; Ong, Henry H.; Franchi, Francesco; Angiolillo, Dominick P.; Peterson, Joshua F.; Rosenman, Marc B.; Skaar, Todd C.; Tuteja, Sony; Cavallari, Larisa H.; Medicine, School of MedicinePurpose Genotype-guided antiplatelet therapy is increasingly being incorporated into clinical care. The purpose of this study is to determine the extent to which patients initially genotyped for CYP2C19 to guide antiplatelet therapy were prescribed additional medications affected by CYP2C19. Methods We assembled a cohort of patients from eight sites performing CYP2C19 genotyping to inform antiplatelet therapy. Medication orders were evaluated from time of genotyping through one year. The primary endpoint was the proportion of patients prescribed two or more CYP2C19 substrates. Secondary endpoints were the proportion of patients with a drug–genotype interaction and time to receiving a CYP2C19 substrate. Results Nine thousand one hundred ninety-one genotyped patients (17% nonwhite) with a mean age of 68 ± 3 years were evaluated; 4701 (51%) of patients received two or more CYP2C19 substrates and 3835 (42%) of patients had a drug–genotype interaction. The average time between genotyping and CYP2C19 substrate other than antiplatelet therapy was 25 ± 10 days. Conclusions More than half of patients genotyped in the setting of CYP2C19-guided antiplatelet therapy received another medication impacted by CYP2C19 in the following year. Given that genotype is stable for a patient’s lifetime, this finding has implications for cost effectiveness, patient care, and treatment outcomes beyond the indication for which it was originally performed.Item Identifying Racial/Ethnic Differences in Clinical Trial Enrollment, Drug Response, and Genetic Biomarkers of Taxane Induced Peripheral Neuropathy in African American Breast Cancer Patients(2021-08) Shah, Ebony; Skaar, Todd C.; Radovich, Milan; Quinney, Sara; Liu, YunlongMy first aim identified enrollment patterns and variables that predict enrollment in a diverse underserved population and evaluated barriers to enrollment. We analyzed data from the INGENIOUS, (Indiana GENomics Implementation and Opportunity for the UnderServed), pharmacogenomics implementation clinical trial conducted at a community hospital for underserved subjects and a statewide healthcare system. Our main finding revealed, African-Americans were less likely to refuse the study than non-Hispanic Whites (Safety net, OR =0.68, p<0.002; Academic hospital, OR=0.64, p<0.001), using a logistic regression model. The most frequent barriers to enrollment included not being interested, being too busy, transportation, and illness in African-American and non-Hispanic White subjects. In conclusion, improving research awareness, widening the inclusion criteria, and hiring recruiters who represent potential enrollees, should improve enrollment in African-Americans and other diverse populations. My 2nd research aim evaluated racial/ethnic differences in pharmacokinetics, safety, efficacy, and pharmacogenetics in 213 new molecular entities (NMEs). The current approved drug label for NMEs between 2014 to 2018 was updated in the FDA database. A qualitative analysis revealed ~ 9% (n=20/213) of NMEs reported racial/ethnic differences in the approved product label for PK, safety, efficacy, and/or pharmacogenetics. In conclusion, evaluating racial/ethnic differences in drug exposure and response early in the drug development program is essential to providing recommendations for different racial/ethnic subpopulations. My final aim 3, identified genetic biomarkers of Taxane Induced Peripheral Neuropathy (TIPN) in African-American breast cancer patients. We used an innovative computational tool, ALDY, to identify genetic variants in CYP2C8, CYP3A4, and CYP3A5 in 207 breast cancer subjects. TaqMan SNP genotyping for SNP, rs776746 (T>C) was performed in 160 subjects. Subjects were collapsed into three metabolizer groups; normal, intermediate, and poor metabolizer to test the association of peripheral neuropathy, dose reductions and CYP2C8/CYP3A5 metabolizer status. A logistic regression revealed CYP2C8 metabolizer status is associated with grades 3-4 peripheral neuropathy (p=0.04, OR= 2.21). CYP2C8*2 was modestly associated with dose reductions. In conclusion, evaluating pharmacogenetic and pharmacokinetic studies of paclitaxel and CYP2C8 is important. These studies may lead to clinical actionable prescribing of paclitaxel and improve the tolerance and efficacy in African-American breast cancer patients.Item Iterative Development and Evaluation of a Pharmacogenomic-Guided Clinical Decision Support System for Warfarin Dosing(Schattauer, 2016-11-23) Melton, Brittany L.; Zillich, Alan J.; Saleem, Jason J.; Russ, Alissa L.; Tisdale, James E.; Overholser, Brian R.; Medicine, School of MedicineObjective Pharmacogenomic-guided dosing has the potential to improve patient outcomes but its implementation has been met with clinical challenges. Our objective was to develop and evaluate a clinical decision support system (CDSS) for pharmacogenomic-guided warfarin dosing designed for physicians and pharmacists. Methods Twelve physicians and pharmacists completed 6 prescribing tasks using simulated patient scenarios in two iterations (development and validation phases) of a newly developed pharmacogenomic-driven CDSS prototype. For each scenario, usability was measured via efficiency, recorded as time to task completion, and participants’ perceived satisfaction which were compared using Kruskal-Wallis and Mann Whitney U tests, respectively. Debrief interviews were conducted and qualitatively analyzed. Usability findings from the first (i.e. development) iteration were incorporated into the CDSS design for the second (i.e. validation) iteration. Results During the CDSS validation iteration, participants took more time to complete tasks with a median (IQR) of 183 (124–247) seconds versus 101 (73.5–197) seconds in the development iteration (p=0.01). This increase in time on task was due to the increase in time spent in the CDSS corresponding to several design changes. Efficiency differences that were observed between pharmacists and physicians in the development iteration were eliminated in the validation iteration. The increased use of the CDSS corresponded to a greater acceptance of CDSS recommended doses in the validation iteration (4% in the first iteration vs. 37.5% in the second iteration, p<0.001). Overall satisfaction did not change statistically between the iterations but the qualitative analysis revealed greater trust in the second prototype. Conclusions A pharmacogenomic-guided CDSS has been developed using warfarin as the test drug. The final CDSS prototype was trusted by prescribers and significantly increased the time using the tool and acceptance of the recommended doses. This study is an important step toward incorporating pharmacogenomics into CDSS design for clinical testing.Item Life-Threatening Docetaxel Toxicity in a Patient With Reduced-Function CYP3A Variants: A Case Report.(Frontiers, 2021) Powell, Nicholas R.; Shugg, Tyler; Ly, Reynold C.; Albany, Costantine; Radovich, Milan; Schneider, Bryan P.; Skaar, Todd C.Docetaxel therapy occasionally causes severe and life-threatening toxicities. Some docetaxel toxicities are related to exposure, and inter-individual variability in exposure has been described based on genetic variation and drug-drug interactions that impact docetaxel clearance. Cytochrome P450 3A4 (CYP3A4) and CYP3A5 metabolize docetaxel into inactive metabolites, and this is the primary mode of docetaxel clearance. Supporting their role in these toxicities, increased docetaxel toxicities have been found in patients with reduced- or loss-of-function variants in CYP3A4 and CYP3A5. However, since these variants in CYP3A4 are rare, little is known about the safety of docetaxel in patients who are homozygous for the reduced-function CYP3A4 variants. Here we present a case of life-threatening (grade 4) pneumonitis, dyspnea, and neutropenia resulting from a single dose of docetaxel. This patient was (1) homozygous for CYP3A4*22, which causes reduced expression and is associated with increased docetaxel-related adverse events, (2) heterozygous for CYP3A4*3, a rare reduced-function missense variant, and (3) homozygous for CYP3A5*3, a common loss of function splicing defect that has been associated with increased docetaxel exposure and adverse events. The patient also carried functional variants in other genes involved in docetaxel pharmacokinetics that may have increased his risk of toxicity. We identified one additional CYP3A4*22 homozygote that received docetaxel in our research cohort, and present this case of severe hematological toxicity. Furthermore, the one other CYP3A4*22 homozygous patient we identified from the literature died from docetaxel toxicity. This case report provides further evidence for the need to better understand the impact of germline CYP3A variants in severe docetaxel toxicity and supports using caution when treating patients with docetaxel who have genetic variants resulting in CYP3A poor metabolizer phenotypes.Item Pharmacogenomically actionable medications in a safety net health care system(2016) Carpenter, Janet S.; Rosenman, Marc B.; Knisely, Mitchell R.; Decker, Brian S.; Levy, Kenneth D.; Flockhart, David A.; IU School of NursingOBJECTIVE: Prior to implementing a trial to evaluate the economic costs and clinical outcomes of pharmacogenetic testing in a large safety net health care system, we determined the number of patients taking targeted medications and their clinical care encounter sites. METHODS: Using 1-year electronic medical record data, we evaluated the number of patients who had started one or more of 30 known pharmacogenomically actionable medications and the number of care encounter sites the patients had visited. RESULTS: Results showed 7039 unique patients who started one or more of the target medications within a 12-month period with visits to 73 care sites within the system. CONCLUSION: Findings suggest that the type of large-scale, multi-drug, multi-gene approach to pharmacogenetic testing we are planning is widely relevant, and successful implementation will require wide-scale education of prescribers and other personnel involved in medication dispensing and handling.Item Steroid Pathway Genes and Neonatal Respiratory Distress After Betamethasone Use in Anticipated Preterm Birth(Sage, 2016-05) Haas, David M.; Lai, Dongbing; Sharma, Sunita; Then, Jenny; Kho, Alvin; Flockhart, David A.; Tantisira, Kelan; Foroud, Tatiana; Department of Obstetrics and Gynecology, IU School of MedicineObjective: To test several key glucocorticoid genes that are enhanced in lung development for associations with respiratory distress syndrome (RDS) after antenatal corticosteroid use. Methods: A prospective cohort of women received betamethasone to accelerate fetal lung maturity for threatened preterm delivery. DNA was obtained from mothers and newborns. Neonatal RDS was the primary outcome. Genotyping for single-nucleotide polymorphisms (SNPs) in 68 glucocorticoid genes found to be differentially expressed during lung development was performed. Multivariable analysis tested for associations of SNPs in the candidate genes with RDS. Results: Genotypic results for 867 SNPs in 96 mothers and 73 babies were included. Thirty-nine (53.4%) babies developed RDS. Maternal SNPs in the centromeric protein E (CENPE), GLRX, CD9, and AURKA genes provided evidence of association with RDS (P < .01). In newborns, SNPs in COL4A3, BHLHE40, and SRGN provided evidence of association with RDS (P < .01). Conclusion: Single-nucleotide polymorphisms in several glucocorticoid responsive genes suggest association with neonatal RDS after antenatal corticosteroid use.Item Variants in the CYP2B6 3′UTR Alter In Vitro and In Vivo CYP2B6 Activity: Potential Role of MicroRNAs(Wiley, 2017) Burgess, Kimberly S.; Ipe, Joseph; Swart, Marelize; Metzger, Ingrid F.; Lu, Jessica; Gufford, Brandon T.; Thong, Nancy; Desta, Zeruesenay; Gaedigk, Roger; Pearce, Robin; Gaedigk, Andrea; Liu, Yunlong; Skaar, Todd C.; Medicine, School of MedicineCYP2B6*6 and CYP2B6*18 are the most clinically important variants causing reduced CYP2B6 protein expression and activity. However, these variants do not account for all variability in CYP2B6 activity. Emerging evidence has shown that genetic variants in the 3′UTR may explain variable drug response by altering microRNA regulation. Five 3′UTR variants were associated with significantly altered efavirenz AUC0-48 (8-OH-EFV/EFV) ratios in healthy human volunteers. The rs70950385 (AG>CA) variant, predicted to create a microRNA binding site for miR-1275, was associated with a 33% decreased CYP2B6 activity among normal metabolizers (AG/AG vs. CA/CA (P < 0.05)). In vitro luciferase assays were used to confirm that the CA on the variant allele created a microRNA binding site causing an 11.3% decrease in activity compared to the AG allele when treated with miR-1275 (P = 0.0035). Our results show that a 3′UTR variant contributes to variability in CYP2B6 activity.