- Browse by Subject
Browsing by Subject "partical swarm optimization"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Towards Training the Extended Voltage Manifold Computer (EVMC) using Particle Swarm Optimization(Office of the Vice Chancellor for Research, 2014-04-11) Bertram, Michael J; Do, Nhan; Gramlin, Lucas; Yoshida, Ken; Salama, Paul; Himebaugh, BryceExtended Analog Computers (EAC) have been explored as a substrate for unconventional computing techniques since the early 1990s. A particular strength of the technique is the near instantaneous speed it solves computational problems. However, application of the EAC and specific EAC classes, as the Extended Voltage Manifold Computer (EVMC), to real-world problems await the development of methods to program EACs. A property of the EVMC is that each output voltage can be described by a class of radial basis functions (RBF). Linking multiple EVMCs, a neural network called a radial basis function network (RBFN) can be implemented. The specific aim of this work is to develop the means to train EVMCs and networks of EVMC based RBFNs. The strategy employed in the present work is to develop a method using EVMCs implemented as finite element method (FEM) simulations to define the error state-space and error gradient of the untrained EVMC manifold. Once defined the EVMC simulation can be recursively configured to reduce the error in a Hebbian sense. Furthermore, particle swarm optimization (PSO) is being explored to improve the speed of convergence. FEM simulations were constructed using COMSOL Multiphysics to model EVMC manifolds in different states. In parallel, a particle swarm optimizer was altered to demonstrate training of simple RBF manifolds. Examination of FEM simulations verified the kernel function as hyperbolic and radially based. These preliminary findings indicated that the EVMC can be accurately modeled and manipulated using COMSOL, and PSO can be used once the error manifold is defined. From this we can take the possibility of improving the speed of training the EVMC via PSO. The next step to verify this possibility is to combine the COMSOL and Python codes to confirm the EVMC can be trained.Item Using computational swarm intelligence for real-time asset allocation(IEEE, 2015-05) Reynolds, Joshua; Christopher, Lauren; Eberhart, Russ; Shaffer, Patrick; Department of Electrical and Computer Engineering, Purdue School of Engineering and TechnologyParticle Swarm Optimization (PSO) is especially useful for rapid optimization of problems involving multiple objectives and constraints in dynamic environments. It regularly and substantially outperforms other algorithms in benchmark tests. This paper describes research leading to the application of PSO to the autonomous asset management problem in electronic warfare. The PSO speed provides fast optimization of frequency allocations for receivers and jammers in highly complex and dynamic environments. The key contribution is the simultaneous optimization of the frequency allocations, signal priority, signal strength, and the spatial locations of the assets. The fitness function takes into account the assets' locations in 2 and 3 dimensions maximizing their spatial distribution while maintaining allocations based on signal priority and power. The fast speed of the optimization enables rapid responses to changing conditions in these complex signal environments, which can have real-time battlefield impact. Initial results optimizing receiver frequencies and locations in 2 dimensions have been successful. Current run-times are between 300 (3 receivers, 30 transmitters) and 1000 (7 receivers, 30 transmitters) milliseconds on a single-threaded x86 based PC. Statistical and qualitative tests indicate the swarm has viable solutions, and finds the global optimum 99% of the time on a test case. The results of the research on the PSO parameters and fitness function for this problem is demonstrated.