ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "parallel numerical methods"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Designing a Parallel Memory-Aware Lattice Boltzmann Algorithm on Manycore Systems
    (IEEE, 2018-09) Fu, Yuankun; Li, Feng; Song, Fengguang; Zhu, Luoding; Computer and Information Science, School of Science
    Lattice Boltzmann method (LBM) is an important computational fluid dynamics (CFD) approach to solving the Naiver-Stokes equations and simulating complex fluid flows. LBM is also well known as a memory bound problem and its performance is limited by the memory access time on modern computer systems. In this paper, we design and develop both sequential and parallel memory-aware algorithms to optimize the performance of LBM. The new memory-aware algorithms can enhance data reuses across multiple time steps to further improve the performance of the original and fused LBM. We theoretically analyze the algorithms to provide an insight into how data reuses occur in each algorithm. Finally, we conduct experiments and detailed performance analysis on two different manycore systems. Based on the experimental results, the parallel memory-aware LBM algorithm can outperform the fused LBM by up to 292% on the Intel Haswell system when using 28 cores, and by 302 % on the Intel Skylake system when using 48 cores.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University