- Browse by Subject
Browsing by Subject "ovarian cancer"
Now showing 1 - 10 of 25
Results Per Page
Sort Options
Item Adenoviral-delivered HE4-HSV-tk sensitizes ovarian cancer cells to ganciclovir(Gene Therapy Press, 2013) Rawlinson, Jennifer W.; Vaden, Kiara; Hunsaker, Joseph; Miller, David F.; Nephew, Kenneth P.; Department of Cellular & Integrative Physiology, IU School of MedicineOvarian cancer (OC) is most often contained within the peritoneal cavity, making it an ideal disease for adenoviral-delivered gene therapies. In effort to develop a safe and effective gene therapy for OC, we created a replication deficient adenovirus bearing the herpes simplex thymidine kinase (HSV-tk) gene under direction of the tumor specific promoter human epididymis protein 4 (HE4). The purpose of this study was to investigate the ability of our adenoviral construct to transduce OC cells in vitro and mediate transgene expression of HSV-tk, thereby sensitizing OC to the pro-drug ganciclovir. Cisplatin-sensitive (CS) and -resistant (CR) A2780 OC cells, infected with virus for 6 hours at 100, 500, and 1000 multiplicity of infection followed by ganciclovir treatment every other day for 5 days, were assayed for cell viability. Adenoviral-mediated transgene expression increased with increasing amounts of virus and peaked at 48 hours after transduction in both A2780-CS and -CR. Unexpectedly, ganciclovir alone was slightly toxic to both A2780 cell lines (IC50 of 234.9 μg/mL and 257.2 μg/mL in A2780-CS and -CR, respectively). Transduction with ADV-HE4-HSV-tk followed by ganciclovir treatment increased (P<0.05) cell killing up to ten-fold, lowering the IC50 to 23.9 μg/mL and 32.6 μg/mL in A2780-CS and -CR, respectively, at 1000 multiplicity of infection. The results support the potential use of this approach as a gene therapy for OC, a disease that accounts for more deaths than any other cancer of the female reproductive system.Item Association between intrauterine device use and endometrial, cervical, and ovarian cancer: an expert review(Elsevier, 2023-08) Minalt, Nicole; Caldwell, Amy; Yedlicka, Grace M.; Joseph, Sophia; Robertson, Sharon E.; Landrum, Lisa M.; Peipert, Jeffrey F.; Obstetrics and Gynecology, School of MedicineThe intrauterine device is one of the most effective forms of contraception. Use of the intrauterine device has increased in the United States over the last 2 decades. Two formulations are commercially available in the United States: the levonorgestrel-releasing intrauterine device and the copper intrauterine device. The levonorgestrel intrauterine device releases progestin, causing endometrial suppression and cervical mucus thickening, whereas the primary mechanism of action of the copper intrauterine device is to create a local inflammatory response to prevent fertilization. Whereas the protective effects of combined hormonal contraception against ovarian and endometrial cancer, and of tubal sterilization against ovarian cancer are generally accepted, less is known about the effects of modern intrauterine devices on the development of gynecologic malignancies. The best evidence for a protective effect of intrauterine device use against cancer incidence pertains to levonorgestrel intrauterine devices and endometrial cancer, although studies suggest that both copper intrauterine devices and levonorgestrel intrauterine devices reduce endometrial cancer risk. This is supported by the proposed dual mechanisms of action including both endometrial suppression and a local inflammatory response. Studies on the relationship between intrauterine device use and ovarian cancer risk show conflicting results, although most data suggest reduced risk of ovarian cancer in intrauterine device users. The proposed biological mechanisms of ovarian cancer reduction (foreign-body inflammatory response, increased pH, antiestrogenic effect, ovulation suppression) vary by type of intrauterine device. Whereas it has been well established that use of copper intrauterine devices confers a lower risk of cervical intraepithelial neoplasms, the effect of levonorgestrel intrauterine device use on cervical cancer remains unclear. Older studies have linked its use to a higher incidence of cervical dysplasia, but more recent literature has found a decrease in cervical cancer with intrauterine device use. Various mechanisms of protection are postulated, including device-related inflammatory response in the endocervical canal and prostaglandin-mediated immunosurveillance. Overall, the available evidence suggests that both levonorgestrel intrauterine devices and copper intrauterine devices reduce gynecologic cancer risk. Whereas there is support for the reduction of endometrial cancer risk with hormonal and copper intrauterine device use, and reduction of cervical cancer risk with copper intrauterine device use, evidence in support of risk reduction with levonorgestrel intrauterine device use for cervical and ovarian cancers is less consistent.Item Cell Origins of High-Grade Serous Ovarian Cancer(MDPI, 2018-11) Kim, Jaeyeon; Park, Eun Young; Kim, Olga; Schilder, Jeanne M.; Coffey, Donna M.; Cho, Chi-Heum; Bast, Robert C.; Biochemistry and Molecular Biology, School of MedicineHigh-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), is the most common and deadliest type of ovarian cancer. HGSC appears to arise from the ovary, fallopian tube, or peritoneum. As most HGSC cases present with widespread peritoneal metastases, it is often not clear where HGSC truly originates. Traditionally, the ovarian surface epithelium (OSE) was long believed to be the origin of HGSC. Since the late 1990s, the fallopian tube epithelium has emerged as a potential primary origin of HGSC. Particularly, serous tubal intraepithelial carcinoma (STIC), a noninvasive tumor lesion formed preferentially in the distal fallopian tube epithelium, was proposed as a precursor for HGSC. It was hypothesized that STIC lesions would progress, over time, to malignant and metastatic HGSC, arising from the fallopian tube or after implanting on the ovary or peritoneum. Many clinical studies and several mouse models support the fallopian tube STIC origin of HGSC. Current evidence indicates that STIC may serve as a precursor for HGSC in high-risk women carrying germline BRCA1 or 2 mutations. Yet not all STIC lesions appear to progress to clinical HGSCs, nor would all HGSCs arise from STIC lesions, even in high-risk women. Moreover, the clinical importance of STIC remains less clear in women in the general population, in which 85–90% of all HGSCs arise. Recently, increasing attention has been brought to the possibility that many potential precursor or premalignant lesions, though composed of microscopically—and genetically—cancerous cells, do not advance to malignant tumors or lethal malignancies. Hence, rigorous causal evidence would be crucial to establish that STIC is a bona fide premalignant lesion for metastatic HGSC. While not all STICs may transform into malignant tumors, these lesions are clearly associated with increased risk for HGSC. Identification of the molecular characteristics of STICs that predict their malignant potential and clinical behavior would bolster the clinical importance of STIC. Also, as STIC lesions alone cannot account for all HGSCs, other potential cellular origins of HGSC need to be investigated. The fallopian tube stroma in mice, for instance, has been shown to be capable of giving rise to metastatic HGSC, which faithfully recapitulates the clinical behavior and molecular aspect of human HGSC. Elucidating the precise cell(s) of origin of HGSC will be critical for improving the early detection and prevention of ovarian cancer, ultimately reducing ovarian cancer mortality.Item CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity(Nature Publishing group, 2017-12-04) Walton, Josephine B.; Farquharson, Malcolm; Mason, Susan; Port, Jennifer; Kruspig, Bjorn; Dowson, Suzanne; Stevenson, David; Murphy, Daniel; Matzuk, Martin; Kim, Jaeyeon; Coffelt, Seth; Blyth, Karen; McNeish, Iain A.; Biochemistry and Molecular Biology, School of MedicineTransplantable murine models of ovarian high grade serous carcinoma (HGSC) remain an important research tool. We previously showed that ID8, a widely-used syngeneic model of ovarian cancer, lacked any of the frequent mutations in HGSC, and used CRISPR/Cas9 gene editing to generate derivatives with deletions in Trp53 and Brca2. Here we have used one ID8 Trp53 −/− clone to generate further mutants, with additional mutations in Brca1, Pten and Nf1, all of which are frequently mutated or deleted in HGSC. We have also generated clones with triple deletions in Trp53, Brca2 and Pten. We show that ID8 Trp53 −/−;Brca1 −/− and Trp53 −/−;Brca2 −/− cells have defective homologous recombination and increased sensitivity to both platinum and PARP inhibitor chemotherapy compared to Trp53 −/−. By contrast, loss of Pten or Nf1 increases growth rate in vivo, and reduces survival following cisplatin chemotherapy in vivo. Finally, we have also targeted Trp53 in cells isolated from a previous transgenic murine fallopian tube carcinoma model, and confirmed that loss of p53 expression in this second model accelerates intraperitoneal growth. Together, these CRISPR-generated models represent a new and simple tool to investigate the biology of HGSC, and the ID8 cell lines are freely available to researchers.Item Deubiquitinase UCHL1 Maintains Protein Homeostasis through the PSMA7–APEH–Proteasome Axis in High-grade Serous Ovarian Carcinoma(AACR, 2021-07) Tangri, Apoorva; Lighty, Kinzie; Loganathan, Jagadish; Mesmar, Fahmi; Podicheti, Ram; Zhang, Chi; Iwanicki, Marcin; Drapkin, Ronny; Nakshatri, Harikrishna; Mitra, Sumegha; Obstetrics and Gynecology, School of MedicineHigh-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand that exacerbate misfolded, unfolded, and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. This study reports that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion, as well as significantly decreased the in vivo metastatic growth of ovarian cancer xenografts. Transcriptional profiling of UCHL1-silenced HGSOC cells revealed downregulation of genes implicated with proteasome activity along with upregulation of endoplasmic reticulum stress–induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH), upon silencing of UCHL1, resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1-silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7–APEH–proteasome axis.This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC and recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress in solid tumors.Item Distinct molecular pathways in ovarian endometrioid adenocarcinoma with concurrent endometriosis(Wiley, 2018) Zhang, Chi; Wang, Xiyin; Anaya, Yanett; Parodi, Luca; Cheng, Lijun; Anderson, Matthew L.; Hawkins, Shannon M.; Medicine, School of MedicineWomen with endometriosis, a benign growth of endometrial tissue outside the uterine cavity, are at increased risk of specific histotypes of epithelial ovarian cancer, such as ovarian endometrioid adenocarcinoma (OEA). Women with OEA who have endometriosis at time of surgical staging demonstrate improved clinical prognosis compared to women with OEA without evidence of endometriosis. However, the molecular contributions of the endometriotic tumor microenvironment to these ovarian cancers remain poorly understood. As a starting point, we used a platform for genome‐wide transcriptomic profiling to compare specimens of OEA from women with and without concurrent endometriosis and benign reproductive tract tissues, including proliferative endometrium and typical and atypical endometrioma samples (n = 20). Principle component analysis revealed distinct clustering between benign and malignant samples as well as malignant samples with and without concurrent endometriosis. Examination of gene signatures revealed that OEA with concurrent endometriosis contained a unique molecular signature compared to OEA without concurrent endometriosis, distinguished by 682 unique genes differentially expressed (fold change < or >1.5, p < 0.01). Bioinformatic analysis of these differentially expressed gene products using ingenuity pathway analysis revealed activation of NFkB signaling, an inflammatory signaling pathway constitutively active in endometriosis. DAVID functional annotation clustering further revealed enrichment in RAS signaling as both cytoskeleton organization and GTPase regulator activity relied heavily on RAS protein signal transduction. Gene set enrichment analysis highlighted immune and inflammatory nodes involved in OEA with concurrent endometriosis. These observations provide novel resources for understanding molecular subtleties potentially involved in OEA within the context of the endometriotic tumor microenvironment.Item Epithelial Ovarian Cancer Experimental Models(Nature Publishing Group, 2014-07-10) Lengyel, E; Burdette, JE; Kenny, HA; Matei, D; Pilrose, J; Haluska, P.; Nephew, KP; Hales, DB; Stack, MS; Department of Medicine, IU School of MedicineEpithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase, and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge and many approaches used to study other solid tumors (lung, colon, and breast, for example) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment. This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients, and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis, and chemoresistance. As these new approaches more accurately recapitulate the complex tumor microenvironment, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge.Item Functional characterization of a panel of high-grade serous ovarian cancer cell lines as representative experimental models of the disease.(Impact Journals, 2016-05-31) Haley, James; Tomar, Sunil; Pulliam, Nicholas; Xiong, Sen; Perkins, Susan M.; Karpf, Adam R.; Mitra, Sumegha; Nephew, Kenneth P.; Mitra, Anirban K.; Department of Medical and Molecular Genetics, IU School of MedicineGenomic analysis of ovarian cancer cell lines has revealed a panel that best represents the most common ovarian cancer subtype, high-grade serous ovarian cancer (HGSOC). However, these HGSOC-like cell lines have not been extensively applied by ovarian cancer researchers to date, and the most commonly used cell lines in the ovarian cancer field do not genetically resemble the major clinical type of the disease. For the HGSOC-like lines to serve as suitable models, they need to be characterized for common functional assays. To achieve that objective, we systematically studied a panel of HGSOC cells CAOV3, COV362, Kuramochi, OVCAR4, OVCAR5, OVCAR8, OVSAHO and SNU119 for migration, invasion, proliferation, clonogenicity, EMT phenotype and cisplatin resistance. They exhibited a range of efficacies and OVCAR5, OVCAR8 and Kuramochi were the most aggressive. SNU119 and OVSAHO cells demonstrated the lowest functional activities. Wide differences in expression of EMT markers were observed between cell lines. SNU119 were the most epithelial and OVCAR8 had the most mesenchymal phenotype. COV362 was the most resistant to cisplatin while CAOV3 was the most sensitive. Taken together, our systematic characterization represents a valuable resource to help guide the application of HGSOC cells by the cancer research community.Item Hypermethylation of the TGF-β target, ABCA1 is associated with poor prognosis in ovarian cancer patients(BioMed Central, 2015-01) Chou, Jian-Liang; Huang, Rui-Lan; Shay, Jacqueline; Chen, Lin-Yu; Lin, Sheng-Jie; Yan, Pearlly S.; Chao, Wei-Ting; Lai, Yi-Hui; Lai, Yen-Ling; Chao, Tai-Kuang; Lee, Cheng-I; Tai, Chien-Kuo; Wu, Shu-Fen; Nephew, Kenneth P.; Huang, Tim H-M; Lai, Hung-Cheng; Chan, Michael W. Y.Background The dysregulation of transforming growth factor-β (TGF-β) signaling plays a crucial role in ovarian carcinogenesis and in maintaining cancer stem cell properties. Classified as a member of the ATP-binding cassette (ABC) family, ABCA1 was previously identified by methylated DNA immunoprecipitation microarray (mDIP-Chip) to be methylated in ovarian cancer cell lines, A2780 and CP70. By microarray, it was also found to be upregulated in immortalized ovarian surface epithelial (IOSE) cells following TGF-β treatment. Thus, we hypothesized that ABCA1 may be involved in ovarian cancer and its initiation. Results We first compared the expression level of ABCA1 in IOSE cells and a panel of ovarian cancer cell lines and found that ABCA1 was expressed in HeyC2, SKOV3, MCP3, and MCP2 ovarian cancer cell lines but downregulated in A2780 and CP70 ovarian cancer cell lines. The reduced expression of ABCA1 in A2780 and CP70 cells was associated with promoter hypermethylation, as demonstrated by bisulfite pyro-sequencing. We also found that knockdown of ABCA1 increased the cholesterol level and promoted cell growth in vitro and in vivo. Further analysis of ABCA1 methylation in 76 ovarian cancer patient samples demonstrated that patients with higher ABCA1 methylation are associated with high stage (P = 0.0131) and grade (P = 0.0137). Kaplan-Meier analysis also found that patients with higher levels of methylation of ABCA1 have shorter overall survival (P = 0.019). Furthermore, tissue microarray using 55 ovarian cancer patient samples revealed that patients with a lower level of ABCA1 expression are associated with shorter progress-free survival (P = 0.038). Conclusions ABCA1 may be a tumor suppressor and is hypermethylated in a subset of ovarian cancer patients. Hypermethylation of ABCA1 is associated with poor prognosis in these patients.Item Knockdown of the DNA repair and redox signaling protein Ape1/ Ref-1 blocks ovarian cancer cell and tumor growth(2008-02) Fishel, Melissa L.; He, Ying; Reed, April M.; Chin-Sinex, Helen; Hutchins, Gary D.; Mendonca, Marc S.; Kelley, Mark R.Apurinic endonuclease 1/redox effector factor-1 (Ape1/Ref-1 or Ape1) is an essential protein with two distinct functions. It is a DNA repair enzyme in the base excision repair (BER) pathway and a reduction–oxidation (redox) signaling factor maintaining transcription factors in an active reduced state. Our laboratory previously demonstrated that Ape1 is overexpressed in ovarian cancer and potentially contributes to resistance. Therefore, we utilized siRNA technology to knockdown protein levels of Ape1 in ovarian cancer cell line, SKOV-3x. Knocking Ape1 down had dramatic effects on cell growth in vitro but was not due to an increase in apoptosis and at least partially due to an extension in transit time through S-phase. Similarly, human ovarian tumor xenografts with reduced levels of Ape1 protein demonstrated a dramatic reduction in tumor volume (p < 0.01) and also statistically significant (p = 0.02) differences in 18F-fluorodeoxyglucose (FDG) uptake indicating reduced glucose metabolism and cellular proliferation. Ape1's role in DNA repair and redox signaling is important to our basic understanding of ovarian cancer cell growth and these findings strongly support Ape1 as a therapeutic target.
- «
- 1 (current)
- 2
- 3
- »