- Browse by Subject
Browsing by Subject "outlier detection"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Knowledge Reused Outlier Detection(IEEE, 2019-03) Yu, Weiren; Ding, Zhengming; Hu, Chunming; Liu, Hongfu; Computer and Information Science, School of ScienceTremendous efforts have been invested in the unsupervised outlier detection research, which is conducted on unlabeled data set with abnormality assumptions. With abundant related labeled data available as auxiliary information, we consider transferring the knowledge from the labeled source data to facilitate the unsupervised outlier detection on target data set. To fully make use of the source knowledge, the source data and target data are put together for joint clustering and outlier detection using the source data cluster structure as a constraint. To achieve this, the categorical utility function is employed to regularize the partitions of target data to be consistent with source data labels. With an augmented matrix, the problem is completely solved by a K-means - a based method with the rigid mathematical formulation and theoretical convergence guarantee. We have used four real-world data sets and eight outlier detection methods of different kinds for extensive experiments and comparison. The results demonstrate the effectiveness and significant improvements of the proposed methods in terms of outlier detection and cluster validity metrics. Moreover, the parameter analysis is provided as a practical guide, and noisy source label analysis proves that the proposed method can handle real applications where source labels can be noisy.Item OSCARS: An Outlier-Sensitive Content-Based Radiography Retrieval System(arXiv, 2022) Guo, Xiaoyuan; Duan, Jiali; Purkayastha, Saptarshi; Trivedi, Hari; Gichoya, Judy Wawira; Banerjee, Imon; BioHealth Informatics, School of Informatics and ComputingImproving the retrieval relevance on noisy datasets is an emerging need for the curation of a large-scale clean dataset in the medical domain. While existing methods can be applied for class-wise retrieval (aka. inter-class), they cannot distinguish the granularity of likeness within the same class (aka. intra-class). The problem is exacerbated on medical external datasets, where noisy samples of the same class are treated equally during training. Our goal is to identify both intra/inter-class similarities for fine-grained retrieval. To achieve this, we propose an Outlier-Sensitive Content-based rAdiologhy Retrieval System (OSCARS), consisting of two steps. First, we train an outlier detector on a clean internal dataset in an unsupervised manner. Then we use the trained detector to generate the anomaly scores on the external dataset, whose distribution will be used to bin intra-class variations. Second, we propose a quadruplet (a, p, nintra, ninter) sampling strategy, where intra-class negatives nintra are sampled from bins of the same class other than the bin anchor a belongs to, while niner are randomly sampled from inter-classes. We suggest a weighted metric learning objective to balance the intra and inter-class feature learning. We experimented on two representative public radiography datasets. Experiments show the effectiveness of our approach.