ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "option pricing"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Generalized Gamma Distribution as a Useful RND under Heston’s Stochastic Volatility Model
    (MDPI, 2022) Boukai, Benzion; Mathematical Sciences, School of Science
    We present the Generalized Gamma (GG) distribution as a possible risk neutral distribution (RND) for modeling European options prices under Heston’s stochastic volatility (SV) model. We demonstrate that under a particular reparametrization, this distribution, which is a member of the scale-parameter family of distributions with the mean being the forward spot price, satisfies Heston’s solution and hence could be used for the direct risk-neutral valuation of the option price under Heston’s SV model. Indeed, this distribution is especially useful in situations in which the spot’s price follows a negatively skewed distribution for which Black–Scholes-based (i.e., the log-normal distribution) modeling is largely inapt. We illustrate the applicability of the GG distribution as an RND by modeling market option data on three large market-index exchange-traded funds (ETF), namely the SPY, IWM and QQQ as well as on the TLT (an ETF that tracks an index of long-term US Treasury bonds). As of the writing of this paper (August 2021), the option chain of each of the three market-index ETFs shows a pronounced skew of their volatility ‘smile’, which indicates a likely distortion in the Black–Scholes modeling of such option data. Reflective of entirely different market expectations, this distortion in the volatility ‘smile’ appears not to exist in the TLT option data. We provide a thorough modeling of the option data we have on each ETF (with the 15 October 2021 expiration) based on the GG distribution and compare it to the option pricing and RND modeling obtained directly from a well-calibrated Heston’s SV model (both theoretically and also empirically, using Monte Carlo simulations of the spot’s price). All three market-index ETFs exhibited negatively skewed distributions, which are well-matched with those derived under the GG distribution as RND. The inadequacy of the Black–Scholes modeling in such instances, which involves negatively skewed distribution, is further illustrated by its impact on the hedging factor, delta, and the immediate implications to the retail trader. Similarly, the closely related Inverse Generalized Gamma distribution (IGG) is also proposed as a possible RND for Heston’s SV model in situations involving positively skewed distribution. In all, utilizing the Generalized Gamma distributions as possible RNDs for direct option valuations under the Heston’s SV is seen as particularly useful to the retail traders who do not have the numerical tools or the know-how to fine-calibrate this SV model.
  • Loading...
    Thumbnail Image
    Item
    How Much Is Your Strangle Worth? On the Relative Value of the Strangle under the Black-Scholes Pricing Model
    (Redfame, 2020-07) Boukai, Ben; Mathematical Sciences, School of Science
    Trading option strangles is a highly popular strategy often used by market participants to mitigate volatility risks in their portfolios. We propose a measure of the relative value of a delta-Symmetric Strangle and compute it under the standard Black-Scholes-Merton option pricing model. This new measure accounts for the price of the strangle, relative to the Present Value of the spread between the two strikes, all expressed, after a natural re-parameterization, in terms of delta and a volatility parameter. We show that under the standard BSM model, this measure of relative value is bounded by a simple function of delta only and is independent of the time to expiry, the price of the underlying security or the prevailing volatility used in the pricing model. We demonstrate how this bound can be used as a quick benchmark to assess, regardless the market volatility, the duration of the contract or the price of the underlying security, the market (relative) value of the strangle in comparison to its BSM (relative) price. In fact, the explicit and simple expression for this measure and bound allows us to also study in detail the strangle’s exit strategy and the corresponding optimal choice for a value of delta.
  • Loading...
    Thumbnail Image
    Item
    On the Class of Risk Neutral Densities under Heston’s Stochastic Volatility Model for Option Valuation
    (MDPI, 2023-05) Boukai, Benzion; Mathematical Sciences, School of Science
    The celebrated Heston’s stochastic volatility (SV) model for the valuation of European options provides closed form solutions that are given in terms of characteristic functions. However, the numerical calibration of this five-parameter model, which is based on market option data, often remains a daunting task. In this paper, we provide a theoretical solution to the long-standing ‘open problem’ of characterizing the class of risk neutral distributions (RNDs), if any, that satisfy Heston’s SV for option valuation. We prove that the class of scale parameter distributions with mean being the forward spot price satisfies Heston’s solution. Thus, we show that any member of this class could be used for the direct risk neutral valuation of option prices under Heston’s stochastic volatility model. In fact, we also show that any RND with mean being the forward spot price that satisfies Heston’s option valuation solution must also be a member of the scale family of distributions in that mean. As particular examples, we show that under a certain re-parametrization, the one-parameter versions of the log-normal (i.e., Black–Scholes), gamma, and Weibull distributions, along with their respective inverses, are all members of this class and thus, provide explicit RNDs for direct option pricing under Heston’s SV model. We demonstrate the applicability and suitability of these explicit RNDs via exact calculations and Monte Carlo simulations, using already published index data and a calibrated Heston’s model (S&P500, ODAX), as well as an illustration based on recent option market data (AMD).
  • Loading...
    Thumbnail Image
    Item
    On the RND under Heston’s stochastic volatility model
    (2021) Boukai, Ben; Mathematical Sciences, School of Science
    We consider Heston's (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Heston's solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Heston's SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons' option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-parameter versions of the {\it Log-Normal, Inverse-Gaussian, Gamma, Weibull} and the {\it Inverse-Weibull} distributions are all members of this class and thus provide explicit risk-neutral densities (RND) for Heston's pricing model. We demonstrate, via exact calculations and Monte-Carlo simulations, the applicability and suitability of these explicit RNDs using already published Index data with a calibrated Heston model (S\&P500, Bakshi, Cao and Chen (1997), and ODAX, Mrázek and Pospíšil (2017)), as well as current option market data (AMD).
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University