ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "nucleotides"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Large-scale genomics unveil polygenic architecture of human cortical surface area
    (Nature Publishing Group, 2015-07-20) Chen, Chi-Hua; Peng, Qian; Schork, Andrew J.; Lo, Min-Tzu; Fan, Chun-Chieh; Wang, Yunpeng; Desikan, Rahul S.; Bettella, Francesco; Hagler, Donald J.; Westlye, Lars T.; Kremen, William S.; Jernigan, Terry L.; Hellard, Stephanie Le; Steen, Vidar M.; Espeseth, Thomas; Huentelman, Matt; Håberg, Asta K.; Agartz, Ingrid; Djurovic, Srdjan; Andreassen, Ole A.; Schork, Nicholas; Dale, Anders M.; Department of Radiology and Imaging Sciences, IU School of Medicine
    Little is known about how genetic variation contributes to neuroanatomical variability, and whether particular genomic regions comprising genes or evolutionarily conserved elements are enriched for effects that influence brain morphology. Here, we examine brain imaging and single-nucleotide polymorphisms (SNPs) data from ~2,700 individuals. We show that a substantial proportion of variation in cortical surface area is explained by additive effects of SNPs dispersed throughout the genome, with a larger heritable effect for visual and auditory sensory and insular cortices (h2~0.45). Genome-wide SNPs collectively account for, on average, about half of twin heritability across cortical regions (N=466 twins). We find enriched genetic effects in or near genes. We also observe that SNPs in evolutionarily more conserved regions contributed significantly to the heritability of cortical surface area, particularly, for medial and temporal cortical regions. SNPs in less conserved regions contributed more to occipital and dorsolateral prefrontal cortices.
  • Loading...
    Thumbnail Image
    Item
    Triptolide Directly Inhibits dCTP Pyrophosphatase
    (2011-07) Corson, Timothy W.; Cavga, Hüseyin; Aberle, Nicholas; Crews, Craig M
    Triptolide is a potent natural product, with documented antiproliferative, immunosuppressive, anti-inflammatory, antifertility, and antipolycystic kidney disease effects. Despite a wealth of knowledge about the biology of this compound, direct intracellular target proteins have remained elusive. We synthesized a biotinylated photoaffinity derivative of triptolide, and used it to identify dCTP pyrophosphatase 1 (DCTPP1) as a triptolide-interacting protein. Free triptolide interacts directly with recombinant DCTPP1, and inhibits the enzymatic activity of this protein. Triptolide is thus the first dCTP pyrophosphatase inhibitor identified, and DCTPP1 is a biophysically validated target of triptolide.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University