ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "non-frameshifting exonic INDELs"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Discriminating between disease-causing and neutral non-frameshifting micro-INDELs by support vector machines by means of integrated sequence- and structure-based features
    (Office of the Vice Chancellor for Research, 2013-04-05) Zhao, Huiying; Yang, Yuedong; Lin, Hai; Zhang, Xinjun; Mort, Matthew; Cooper, David N.; Liu, Yunlong; Zhou, Yaoqi
    Micro-INDELs (insertions or deletions of ≤20 bp) constitute the second most frequent class of human gene mutation after single nucleotide variants. A significant portion of exonic INDELs are non-frameshifting (NFS), serving to insert or delete a discrete number of amino-acid residues. Despite the relative abundance of NFS-INDELs, their damaging effect on protein structure and function has gone largely unstudied whilst bioinformatics tools for discriminating between disease-causing and neutral NFS-INDELs remain to be developed. We have developed such a technique (DDIG-in; Detecting DIsease-causing Genetic variations due to INDELs) by comparing the properties of disease-causing NFS-INDELs from the Human Gene Mutation Database (HGMD) with putatively neutral NFS-INDELs from the 1,000 Genomes Project. Having considered 58 different sequence- and structure-based features, we found that predicted disordered regions around the NFS-INDEL region had the highest discriminative capability (disease versus neutral) with an Area Under the receiver-operating characteristic Curve (AUC) of 0.82 and a Matthews Correlation Coefficient (MCC) of 0.56. All features studied were combined by support vector machines (SVM) and selected by a greedy algorithm. The resulting SVM models were trained and tested by ten-fold cross-validation on the microdeletion dataset and independently tested on the microinsertion dataset and vice versa. The final SVM model for determining NFS-INDEL disease-causing probability was built on non-redundant datasets with a protein sequence identity cutoff of 35% and yielded an MCC value of 0.68, an accuracy of 84% and an AUC of 0.89. Predicted disease-causing probabilities exhibited a strong negative correlation with the average minor allele frequency (correlation coefficient, -0.84). DDIG-in, available at http://sparks.informatics.iupui.edu, can be used to estimate the disease-causing probability for a given NFS-INDEL.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University