- Browse by Subject
Browsing by Subject "nitrogen addition"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe(Wiley, 2017-01) Zhang, Xiaolin; Tan, Yulian; Zhang, Bingwei; Li, Ang; Daryanto, Stefani; Wang, Lixin; Huang, Jianhui; Department of Earth Sciences, School of ScienceSoil respiration, Rs, is strongly controlled by water availability in semiarid grasslands. However, how Rs is affected by precipitation change (either as rainfall or as snowfall) especially under increasing nitrogen (N) deposition has been uncertain. A manipulative experiment to investigate the responses of growing season Rs to changes in spring snowfall or summer rainfall with or without N addition was conducted in the semiarid temperate steppe of China during three hydrologically contrasting years. Our results showed that both spring snow addition and summer water addition significantly increased Rs by increasing soil moisture. The effect of spring snow addition only occurred in years with both relatively lower natural snowfall and later snowmelt time. Summer water addition showed a much stronger effect on Rs by increasing plant root growth and microbial activities, but the magnitude also largely depended on the possible legacy effect of previous year precipitation. Our results indicated that precipitation increase in the form of snowfall had weaker effects than that in the form of rainfall as the former only accounted for less than 30% of total precipitation. Compared with other ecosystem processes, Rs was less responsible for increase in N deposition as it did not increase root productivity and microbial activities in the soils. Our results provided field data constraints for modeling the ecosystem carbon balance under the future global change scenarios in semiarid grasslands.Item Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis(Elsevier, 2023-12) Wang, Yunqi; Peng, Yu; Lin, Jiaqi; Wang, Lixin; Jia, Zhikuan; Zhang, Rui; Earth and Environmental Sciences, School of ScienceNitrogen (N) addition is commonly employed to enhance wheat production, and the effectiveness is strongly influenced by site-specific factors encompassing environmental conditions and crop management practices. However, the current understanding fails to adequately account for the intricate and variable interactions among these factors. Consequently, we conducted a global meta-analysis to quantify the combined contributions of these factors to wheat yield, grain protein content (GPC), and water productivity (WP) and provide recommendations for optimizing N management. The results revealed a significant improvement in grain yield (14.85%), GPC (6.62%), and WP (10.79%) following the application of N. Moreover, higher N addition rates, the utilization of coated N fertilizer, post-anthesis fertilization, and multiple N applications exhibited enhanced outcomes in terms of yield, GPC, and WP in wheat systems. It was observed that applying 100–200 kg/ha of N was the optimal rate for maximizing yield, GPC, and WP. Medium soil texture and humid climate conditions showed a more pronounced increase in yield in response to N addition. Additionally, wheat yield demonstrated a stronger response to N addition benefits when the annual temperature was below 14 °C, while GPC showed a higher increase with temperatures exceeding 14 °C. Furthermore, adopting common N fertilization practices alongside irrigation and implementing pre-anthesis N addition in medium soil texture and humid climate conditions also contributed to achieving optimal wheat performance. The finding of this study serves as a guideline to support on-site N addition practice for wheat and to offer a reference to N management policy design across specific site conditions.