- Browse by Subject
Browsing by Subject "neuroimmune"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Central neural activation following contact sensitivity peripheral immune challenge: evidence of brain–immune regulation through C fibres.(Wiley, 2015-10) Thinschmidt, Jeffrey S.; King, Michael A.; Korah, Maria; Perez, Pablo D.; Febo, Marcelo; Miyan, Jaleel; Grant, Maria B.; Department of Ophthalmology, IU School of MedicineThis study tested the hypothesis that peripheral immune challenges will produce predictable activation patterns in the rat brain consistent with sympathetic excitation. As part of examining this hypothesis, this study asked whether central activation is dependent on capsaicin-sensitive C-fibres. We induced skin contact sensitivity immune responses with 2,4-dinitrochlorobenzene (DNCB), in the presence or absence of the acute C-fibre toxin capsaicin (8-methyl-N-vanillyl-6-nonenamide) to trigger immune responses with and without diminished activity of C-fibres. Innovative blood-oxygen-level-dependent functional magnetic resonance imaging data revealed that the skin contact sensitivity immune responses induced with DNCB were associated with localized increases in brain neuronal activity in treated rats. This response was diminished by pre-treatment with capsaicin 1 week before scans. In the same animals, we found expression of the immediate early gene c-Fos in sub-regions of the amygdala and hypothalamic sympathetic brain nuclei. Significant increases in c-Fos expression were found in the supraoptic nucleus, central amygdala and medial habenula following immune challenges. Our results support the idea that selective brain regions, some of which are associated with sympathetic function, process or modulate immune function through pathways that are partially dependent on C-fibres. Together with previous studies demonstrating the motor control pathways from brain to immune targets, these findings indicate a central neuroimmune system to monitor host status and coordinate appropriate host responses.Item The Role of ABI3 in Obesity and Metabolic Regulation(2024-04) Smith, Daniel Curtis; Oblak, Adrian; Kim, Jungsu; Flak, Jonathan; Lasagna-Reeves, Cristian; Evans-Molina, CarmellaAbelson Interactor Protein 3 is an adaptor protein involved in cytoskeletal remodeling. ABI3 is predominantly expressed within mononuclear phagocytotic immune cells within the brain, such as macrophages, peripherally, and microglia. Until recently, little was known about the function of the ABI3 protein, and even less was known regarding its role in disease. Following the identification of a rare mutation within ABI3 that increases the risk of developing Alzheimer’s disease, our laboratory began to investigate the impact of deleting Abi3 in mouse models. While we initially set out to investigate ABI3 in the context of neurodegeneration, we unexpectedly discovered that loss of Abi3 led to obesity in mice. This discovery and the subsequent efforts to uncover the mechanisms by which loss of Abi3 induces obesity are the subject of this dissertation. First, we demonstrate that deletion of Abi3 leads to severe obesity in aged mice. We identified significant Abi3-dependent transcriptomic changes within the hypothalamus, but not adipose tissue, of these mice. These changes occurred within pathways related to immune function, and subsequent immunostaining revealed decreased microglia number and area within the mediobasal hypothalamus of Abi3-/- mice. Next, we performed a longitudinal high-fat diet study to explore the impact of loss of Abi3 on mouse body weight and metabolic regulation during chronic nutrient excess and control conditions. Intriguingly, we found that only female Abi3-/- mice exhibited increased body weight during high-fat diet feeding. Subsequent transcriptomics from the hypothalamus of female Abi3+/+ and Abi3-/- mice from both high-fat and control diet groups revealed cytoskeletal-related changes only in the obese, high-fat diet-fed female Abi3-/- mice. Follow-up immunostaining revealed decreased microglia coverage within the mediobasal hypothalamus of the obese, high-fat diet-fed female Abi3-/- mice. While much remains to be explored regarding the precise role of ABI3 in the setting of energy balance regulation and obesity, our investigations revealed that loss of ABI3 is sufficient to induce obesity and appears to occur through altered microglia function within the hypothalamus. This dissertation represents a critical first step in the investigation of a novel regulator of obesity pathology.