- Browse by Subject
Browsing by Subject "neural regeneration"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Automated monitoring of early neurobehavioral changes in mice following traumatic brain injury(Medknow Publications, 2016-02) Qu, Wenrui; Liu, Nai-Kui; Xie, Xin-Min Simon; Li, Rui; Xu, Xiao-Ming; Department of Neurological Surgery, IU School of MedicineTraumatic brain injury often causes a variety of behavioral and emotional impairments that can develop into chronic disorders. Therefore, there is a need to shift towards identifying early symptoms that can aid in the prediction of traumatic brain injury outcomes and behavioral endpoints in patients with traumatic brain injury after early interventions. In this study, we used the SmartCage system, an automated quantitative approach to assess behavior alterations in mice during an early phase of traumatic brain injury in their home cages. Female C57BL/6 adult mice were subjected to moderate controlled cortical impact (CCI) injury. The mice then received a battery of behavioral assessments including neurological score, locomotor activity, sleep/wake states, and anxiety-like behaviors on days 1, 2, and 7 after CCI. Histological analysis was performed on day 7 after the last assessment. Spontaneous activities on days 1 and 2 after injury were significantly decreased in the CCI group. The average percentage of sleep time spent in both dark and light cycles were significantly higher in the CCI group than in the sham group. For anxiety-like behaviors, the time spent in a light compartment and the number of transitions between the dark/light compartments were all significantly reduced in the CCI group than in the sham group. In addition, the mice suffering from CCI exhibited a preference of staying in the dark compartment of a dark/light cage. The CCI mice showed reduced neurological score and histological abnormalities, which are well correlated to the automated behavioral assessments. Our findings demonstrate that the automated SmartCage system provides sensitive and objective measures for early behavior changes in mice following traumatic brain injury.Item Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis(Medknow Publications, 2017-10) Haulcomb, Melissa M.; Meadows, Rena M.; Miller, Whitney M.; McMillan, Kathryn P.; Hilsmeyer, MeKenzie J.; Wang, Xuefu; Beaulieu, Wesley T.; Dickinson, Stephanie L.; Brown, Todd J.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy and Cell Biology, School of MedicineAmyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival. Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression. Use of the mSOD1G93A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients, while investigating underlying disease-induced changes. In the present study, we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom, resembling the common gait abnormality foot drop, along with an accompanying forelimb compensatory mechanism in the mSOD1G93A mouse. Following these initial changes, mSOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait. As the disease progressed, these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared. We next applied these initial findings to investigate the inherent variability in B6SJL mSOD1G93A survival. We identified four behavioral variables that, when combined in a cluster analysis, identified two subpopulations with different disease progression rates: a fast progression group and a slow progression group. This behavioral assessment paradigm, with its analytical approaches, provides a method for monitoring disease progression and detecting mSOD1 subgroups with different disease severities. This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression. Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.Item Optogenetics and its application in neural degeneration and regeneration(Wolters Kluwer, 2017-08) Ordaz, Josue D.; Wu, Wei; Xu, Xiao-Ming; Neurological Surgery, School of MedicineNeural degeneration and regeneration are important topics in neurological diseases. There are limited options for therapeutic interventions in neurological diseases that provide simultaneous spatial and temporal control of neurons. This drawback increases side effects due to non-specific targeting. Optogenetics is a technology that allows precise spatial and temporal control of cells. Therefore, this technique has high potential as a therapeutic strategy for neurological diseases. Even though the application of optogenetics in understanding brain functional organization and complex behaviour states have been elaborated, reviews of its therapeutic potential especially in neurodegeneration and regeneration are still limited. This short review presents representative work in optogenetics in disease models such as spinal cord injury, multiple sclerosis, epilepsy, Alzheimer’s disease and Parkinson’s disease. It is aimed to provide a broader perspective on optogenetic therapeutic potential in neurodegeneration and neural regeneration.Item The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord(Elsevier, 2016-10-11) Wang, Lei-Lei; Su, Zhida; Tai, Wenjiao; Zou, Yuhua; Xu, Xiao-Ming; Zhang, Chun-Li; Department of Neurological Surgery, IU School of MedicineAlthough the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI.