ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "nerve growth factor (NGF)"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cellular Mechanisms Mediating the Actions of Nerve Growth Factor in Sensory Neurons
    (2007-08-08T15:24:37Z) Park, Kellie Adrienne; Vasko, Michael R.
    Nerve growth factor (NGF) is a neurotrophin upregulated with injury and inflammation. Peripheral administration of NGF causes hyperalgesia and allodynia in animals. Blocking NGF signaling reverses these effects. At the cellular level, chronic exposure of sensory neurons to NGF enhances expression the neurotransmitter, calcitonin gene-related peptide (CGRP). Acute exposure to NGF increases capsaicin-evoked CGRP release from sensory neurons in culture. Thus, NGF increases peptide release from neurons by: (1) increasing expression of peptides, and/or (2) altering their sensitivity. The increase in peptide outflow by either mechanism could contribute to development of hyperalgesia and allodynia. The signaling cascades mediating the actions of NGF in sensory neurons are unclear. Therefore, experiments were designed to determine which pathways regulate changes in iCGRP content and evoked release from primary sensory neurons in culture. The Ras/MEK/ERK cascade was identified as a possible regulator of iCGRP expression in response to NGF. To test this pathway, it was manipulated in neurons by (1) expression of dominant negative or constitutively active isoforms of Ras, (2) farnesyltransferase inhibition, (3) manipulation of the RasGAP, synGAP, and (4) blocking MEK activity. When the pathway was blocked, the NGF-induced increase in iCGRP expression was attenuated. When the Ras pathway was activated, iCGRP expression increased. These data indicate that Ras, and downstream signaling kinases, MEK and ERK, regulate the NGF-induced increases in CGRP in sensory neurons. To determine which pathway(s) regulate the increase in capsaicin-evoked iCGRP release upon brief exposure to NGF, the Ras/MEK/ERK pathway was manipulated as described above, and pharmacological inhibitors of the PI3 kinase, PLC, and Src kinase pathways were used. There were no differences observed in NGF-sensitization when the Ras and PI3 kinase pathways were inhibited, suggesting these two pathways were not involved. However, when the Src kinase inhibitor PP2 was used, the NGF-induced increase in release was completely blocked. Furthermore, the PKC inhibitor, BIM, also inhibited the sensitization by NGF. This data indicate Src and PKC regulate of sensitivity of sensory neurons in response to brief exposure to NGF. Thus, there is differential regulation of iCGRP content and evoked release from sensory neurons in response to NGF.
  • Loading...
    Thumbnail Image
    Item
    Not all neurogenic bladders are the same: a proposal for a new neurogenic bladder classification system
    (TAU, 2016-01-25) Powell, Charles R.; Department of Urology, IU School of Medicine
    Neurogenic bladder (NGB) has long been defined as a clinical entity that describes a heterogeneous collection of syndromes. The common theme is a bladder disorder concomitant with a neurologic disorder. This definition does not give the clinician much information about the bladder disorder, nor how to treat it, or even what the natural history of the disorder is likely to be. It may be time for a new classification scheme to better define the bladder defect and prognosis, as well as inform treatment. We propose a classification system based on seven categories, each having a neurologic defect in a distinct anatomic location. This is termed SALE (Stratify by Anatomic Location and Etiology). In addition, the presence or absence of bowel dysfunction and autonomic dysreflexia will be reported. In the future, as more definite prognostic information can be gleaned from biomarkers, we anticipate adding urinary nerve growth factor (NGF) and urinary brain-derived neurotrophic factor (BDNF) levels to the definition. We expect the SALE system to efficiently describe a patient suffering from NGB and simultaneously inform the most appropriate treatment, follow-up regimen, and long-term prognosis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University