- Browse by Subject
Browsing by Subject "neonatal"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Congenital Hypothyroidism 3-Year Follow-Up Project: Region 4 Midwest Genetics Collaborative Results(MDPI, 2018-06) Wintergerst, Kupper A.; Eugster, Erica; Andruszewski, Karen; Kleyn, Mary; Vanderburg, Nancy; Sockalosky, Joe; Menon, Ram; Linard, Sharon; Kingery, Suzanne; Rose, Susan R.; Moore, Julie; Gembel, Gina; Gorman, Lisa; Pediatrics, School of MedicineTo identify the 3-year follow-up management and education patterns of primary care clinicians and pediatric endocrinologists for children diagnosed with congenital hypothyroidism (CH) through newborn screening programs, the Region 4 Midwest Genetics Collaborative, made up of seven regional states (Illinois, Indiana, Kentucky, Michigan, Minnesota, Ohio, Wisconsin), performed a survey study of parents and physicians caring for children identified with CH. The clinicians and parents of 409 children with CH regionally identified in 2007 were invited to participate in a voluntary survey. Responses relating to treatment, monitoring practices, educational resources, genetic counseling, and services provided/received were collected from 214 clinicians and 77 parents. In total, 99% had undergone a confirmatory test following positive newborn screening and 55% had imaging at diagnosis, but only 50% were identified as having the etiology identified. Thyroid withdrawal challenge testing was the choice method for re-evaluating thyroid function, but the approach varied. Clinician and parent responses to education and genetic counseling also differed. Clinicians report face-to-face education as the most common method, with less than 50% providing handouts to patients. Only 14% of patients were referred to a genetics counselor. Of parents reporting on their educational experience, 86% received face-to-face education from a pediatric endocrinologist and 4% received education from a genetic counselor. Only 65%, however, were satisfied with their education. These survey data suggest a lack of a standardized approach to diagnosis, follow-up, education, and genetic counseling. This collaborative effort provides insight into developing three-year follow-up, education and genetic counseling guidelines for children diagnosed with CH.Item Cumulative Effects of Neonatal Hyperoxia on Murine Alveolar Structure and Function(Wiley, 2017-05) Cox, Angela M.; Gao, Yong; Perl, Anne-Karina T.; Tepper, Robert S.; Ahlfeld, Shawn K.; Pediatrics, School of MedicineBackground Bronchopulmonary dysplasia (BPD) results from alveolar simplification and abnormal development of alveolar and capillary structure. Survivors of BPD display persistent deficits in airflow and membrane and vascular components of alveolar gas diffusion. Despite being the defining feature of BPD, various neonatal hyperoxia models of BPD have not routinely assessed pulmonary gas diffusion. Methods To simulate the most commonly-utilized neonatal hyperoxia models, we exposed neonatal mice to room air or ≥90% hyperoxia during key stages of distal lung development: through the first 4 (saccular), 7 (early alveolar), or 14 (bulk alveolar) postnatal days, followed by a period of recovery in room air until 8 weeks of age when alveolar septation is essentially complete. We systematically assessed and correlated the effects of neonatal hyperoxia on the degree of alveolar–capillary structural and functional impairment. We hypothesized that the degree of alveolar–capillary simplification would correlate strongly with worsening diffusion impairment. Results Neonatal hyperoxia exposure, of any duration, resulted in alveolar simplification and impaired pulmonary gas diffusion. Mean Linear Intercept increased in proportion to the length of hyperoxia exposure while alveolar and total lung volume increased markedly only with prolonged exposure. Surprisingly, despite having a similar effect on alveolar surface area, only prolonged hyperoxia for 14 days resulted in reduced pulmonary microvascular volume. Estimates of alveolar and capillary structure, in general, correlated poorly with assessment of gas diffusion. Conclusion Our results help define the physiological and structural consequences of commonly-employed neonatal hyperoxia models of BPD and informtheir clinical utility.Item Epigenetic regulation in neonatal ECFCs following intrauterine exposure to gestational diabetes(Office of the Vice Chancellor for Research, 2015-04-17) Blue, Emily K.; Sheehan, BreAnn M.; Nuss, Zia V.; Gohn, Cassandra R.; Varberg, Kaela M.; McClintick, Jeanette N.; Haneline, Laura S.Gestational diabetes (GDM) complicates up to 10% of pregnancies. In addition to acute risks, the children of diabetic mothers have an increased risk of obesity, diabetes, and hypertension, starting in childhood. While the causes of this increased risk are unknown, previous studies in our lab have identified functional deficits in endothelial colony forming cells (ECFCs) isolated from the cord blood of GDM pregnancies. This study focused on identifying genes that have altered epigenetic modifications that result in abnormal mRNA and protein expression in ECFCs from the cord blood GDM pregnancies. The objective of this study was to identify mRNA expression and DNA methylation alterations in ECFCs that may help identify the causes of ECFC dysfunction following intrauterine exposure to GDM. ECFCs were obtained from control and GDM pregnancies. DNA, RNA, and protein samples were isolated in parallel from ECFCs. RNA microarray analysis using the Affymetrix Human 1.0 Gene Array was used to identify gene expression alterations in GDM ECFCs compared to control ECFCs. Genome-wide DNA methylation was assessed using an Infinium 450K Methylation Array for DNA samples at >450,000 CpG sites. Correlation analysis was performed to identify possible sites that have altered CpG methylation and RNA expression. RNA expression results were validated using qRT-PCR and western blotting. Bisulfite sequencing of genomic DNA from the ECFCs was performed to identify additional sites with altered methylation for regions not included in the DNA methylation array. Of the 28,000 genetic loci tested, 596 mRNAs were altered between control and GDM ECFCs (p<0.01). More stringent criteria identified 38 genes for further investigation by limiting analysis to genes that exhibited increased or decreased expression by at least 50%, with a p<0.01. PLAC8 was identified as being increased 5-fold by microarray analysis, a result which was confirmed in two cohorts by qRT-PCR and western blotting. Analysis of the methylation array and bisulfite sequencing results revealed 3 regions surrounding the transcriptional start site of PLAC8 gene whose CpG methylation negatively correlate with RNA expression in samples from control and GDM ECFCs. In contrast, a CpG island is fully unmethylated in both control and GDM ECFCs. The discovery of CpG sites whose methylation correlates with PLAC8 mRNA expression in ECFCs is consistent with the hypothesis that intrauterine exposure to GDM results in epigenetic changes. Analysis of methylation at this site could be used as a biomarker for children of mothers with GDM who may be at risk for disease later in life. Using bisulfite pyrosequencing, we are currently developing assays to quickly determine if methylation of the PLAC8 putative promoter region is altered in cord blood mononuclear cells obtained from GDM or healthy control pregnancies. We are also investigating the role of methylation in regulating PLAC8 RNA expression, determining if there is altered histone modifications and transcription factor binding in these regions, and examining other genes that may comprise a molecular signature of ECFC dysfunction.Item Neonatal Extremity Compartment Syndrome: A Rare Diagnosis Requiring Prompt Recognition(Thieme, 2020-10) Severyn, Nicholas T.; Kua, Kok Lim; Pediatrics, School of MedicineNeonatal extremity compartment syndrome is an extremely rare diagnosis. Risk factors that predispose infants to a hypercoagulable state or trauma have been implicated, but the exact mechanisms remain poorly understood. The hallmark of the condition is extremity swelling with sentinel skin changes. We report a case of upper extremity compartment syndrome from initial presentation until 3 months after discharge and discuss the importance of prompt diagnosis and timely surgical evaluation.