- Browse by Subject
Browsing by Subject "necrotizing enterocolitis"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A hydrogen-sulfide derivative of mesalamine reduces the severity of intestinal and lung injury in necrotizing enterocolitis through endothelial nitric oxide synthase(American Physiological Society, 2022-10-01) Hosfield, Brian D.; Hunter, Chelsea E.; Li, Hongge; Drucker, Natalie A.; Pecoraro, Anthony R.; Manohar, Krishna; Shelley, W. Christopher; Markel, Troy A.; Surgery, School of MedicineNecrotizing enterocolitis (NEC) remains a devastating disease that affects preterm infants. Hydrogen sulfide (H2S) donors have been shown to reduce the severity of NEC, but the optimal compound has yet to be identified. We hypothesized that oral H2S-Mesalamine (ATB-429) would improve outcomes in experimental NEC, and its benefits would be dependent on endothelial nitric oxide synthase (eNOS) pathways. NEC was induced in 5-day-old wild-type (WT) and eNOS knockout (eNOSKO) pups by formula feeding and stress. Four groups were studied in both WT and eNOSKO mice: 1) breastfed controls, 2) NEC, 3) NEC + 50 mg/kg mesalamine, and 4) NEC + 130 mg/kg ATB-429. Mesalamine and ATB-429 doses were equimolar. Pups were monitored for sickness scores and perfusion to the gut was measured by Laser Doppler Imaging (LDI). After euthanasia of the pups, intestine and lung were hematoxylin and eosin-stained and scored for injury in a blind fashion. TLR4 expression was quantified by Western blot and IL-6 expression by ELISA. P < 0.05 was significant. Both WT and eNOSKO breastfed controls underwent normal development and demonstrated milder intestinal and pulmonary injury compared with NEC groups. For the WT groups, ATB-429 significantly improved weight gain, reduced clinical sickness score, and improved perfusion compared with the NEC group. In addition, WT ATB-429 pups had a significantly milder intestinal and pulmonary histologic injury when compared with NEC. ATB-429 attenuated the increase in TLR4 and IL-6 expression in the intestine. When the experiment was repeated in eNOSKO pups, ATB-429 offered no benefit in weight gain, sickness scores, perfusion, intestinal injury, pulmonary injury, or decreasing intestinal inflammatory markers. An H2S derivative of mesalamine improves outcomes in experimental NEC. Protective effects appear to be mediated through eNOS. Further research is warranted to explore whether ATB-429 may be an effective oral therapy to combat NEC.Item Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis(Elsevier, 2018) Drucker, Natalie A.; Jensen, Amanda R.; Ferkowicz, Michael; Markel, Troy A.; Surgery, School of MedicineBackground Necrotizing enterocolitis (NEC) continues to be a morbid surgical condition among preterm infants. Novel therapies for this condition are desperately needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter that has been found to have beneficial properties. We therefore hypothesized that intraperitoneal injection of various H2S donors would improve clinical outcomes, increase intestinal perfusion, and reduce intestinal injury in an experimental mouse model of necrotizing enterocolitis. Methods NEC was induced in five-day-old mouse C57BL/6 mouse pups through maternal separation, formula feeding, and intermittent hypoxic and hypothermic stress. The control group (n = 10) remained with their mother and breastfed ad lib. Experimental groups (n = 10/group) received intraperitoneal injections of phosphate buffered saline (PBS) vehicle or one of the following H2S donors: (1) GYY4137, 50 mg/kg daily; (2) Sodium sulfide (Na2S), 20 mg/kg three times daily; (3) AP39, 0.16 mg/kg daily. Pups were monitored for weight gain, clinical status, and intestinal perfusion via transcutaneous Laser Doppler Imaging (LDI). After sacrifice on day nine, intestinal appearance and histology were scored and cytokines were measured in tissue homogenates of intestine, liver, and lung. Data were compared with Mann–Whitney and p < 0.05 was considered significant. Results Clinical score and weight gain were significantly improved in all three H2S-treated groups as compared to vehicle (p < 0.05 for all groups). Intestinal perfusion of the vehicle group was 22% of baseline while the GYY4137 group was 38.7% (p = 0.0103), Na2S was 47.0% (p = 0.0040), and AP39 was 43.0% (p = 0.0018). The vehicle group had a median histology score of 2.5, while the GYY4137 group's was 1 (p = 0.0013), Na2S was 0.5 (p = 0.0004), and AP39 was 0.5 (p = 0.0001). Cytokine analysis of the intestine of the H2S-treated groups revealed levels closer to breastfed pups as compared to vehicle (p < 0.05 for all groups). Conclusion Intraperitoneal administration of H2S protects against development of NEC by improving mesenteric perfusion, and by limiting mucosal injury and altering the tissue inflammatory response. Further experimentation is necessary to elucidate downstream mechanisms prior to clinical implementation.Item Inhibiting hydrogen sulfide production in umbilical stem cells reduces their protective effects during experimental necrotizing enterocolitis(Elsevier, 2019) Drucker, Natalie A.; te Winkel, Jan P.; Shelley, W. Christopher; Olson, Kenneth R.; Markel, Troy A.; Surgery, School of MedicineIntroduction Umbilical mesenchymal stem cells (USC) have been shown to reduce illness in animal models of necrotizing enterocolitis (NEC), possibly through the paracrine release of hydrogen sulfide (H2S). We hypothesized that animals treated with USCs with inhibited H2S synthesis would exhibit more severe disease. Methods NEC was induced in five-day-old mouse pups by formula feeding and hypoxic and hypothermic stress. Experimental groups received intraperitoneal injection of either saline vehicle or 80,000cells/gram of one of the following cell types: USC, USCs with negative-control siRNA, or USCs with targeted siRNA inhibition of the H2S-producing enzymes. Pups were monitored by clinical assessment and after euthanasia, intestine and lung histologic injury were scored. Tissue was homogenized, and concentrations of IL-6, IL-10, and VEGF were determined by ELISA. For statistical analysis, p < 0.05 was considered significant. Results Animals treated with negative-control siRNA USCs were significantly improved compared to vehicle. Clinical sickness scores as well as intestinal and lung histologic injury scores in the targeted siRNA groups were significantly worse when compared to the negative-control siRNA group. IL-6, IL-10, and VEGF had varying patterns of expression in the different groups. Conclusion Inhibition of H2S production in USCs reduces the beneficial effects of these cells during therapy in experimental NEC.Item Loss of Endothelial Nitric Oxide Synthase Exacerbates Intestinal and Lung Injury in Experimental Necrotizing Enterocolitis(Elsevier, 2018) Drucker, Natalie A.; Jensen, Amanda R.; te Winkel, Jan P.; Ferkowicz, Michael J.; Markel, Troy A.; Surgery, School of MedicineBackground Necrotizing enterocolitis (NEC) continues to be a devastating condition among preterm infants. Nitric oxide, which is synthesized in the intestine by endothelial nitric oxide synthase (eNOS), acts as a potent vasodilator and antioxidant within the mesentery and may play a role in prevention of NEC. We hypothesized that loss of endothelial nitric oxide would worsen both intestinal and associated lung injury and increase local and systemic inflammation during experimental NEC. Methods NEC was induced in five-day-old wild type (WT) and eNOS-knockout (eNOSKO) mouse pups. Experimental groups (n = 10) were formula fed and subjected to intermittent hypoxic and hypothermic stress, while control groups (n = 10) remained with their mother to breastfeed. Pups were monitored by daily clinical assessment. After sacrifice on day nine, intestine and lung were assessed for injury, and cytokines were measured in tissue homogenates by ELISA. Data were compared with Mann–Whitney, and p < 0.05 was significant. Results Each NEC group was compared to its respective strain’s breastfed control to facilitate comparisons between the groups. Both NEC groups were significantly sicker than their breastfed controls. eNOSKO NEC animals had a median clinical assessment score of 3 (IQR = 1–5), and the WT NEC animal’s median score was 3 (IQR = 2–5). Despite similar clinical scores, intestinal injury was significantly worse in the eNOSKO NEC groups compared to WT NEC groups (median injury scores of 3.25 (IQR = 2.25–3.625) and 2 (IQR = 1–3), respectively (p = 0.0474). Associated lung injury was significantly worse in the eNOSKO NEC group as compared to the WT NEC group (median scores of 8.5 (IQR = 6.75–11.25) and 6.5 (IQR = 5–7.5), respectively, p = 0.0391). Interestingly, cytokines in both tissues were very different between the two groups, with varying effects noted for each cytokine (IL-6, IL-1β, VEGF, and IL-12) in both tissues. Conclusion Nitric oxide from eNOS plays a key role in preventing the development of NEC. Without eNOS function, both intestinal and lung injuries are more severe, and the inflammatory cascade is significantly altered. Further studies are needed to determine how eNOS-derived nitric oxide facilitates these beneficial effects.Item Mesenchymal Stromal Cell Therapy for the Treatment of Intestinal Ischemia: Defining the Optimal Cell Isolate for Maximum Therapeutic Benefit(Elsevier, 2016-12) Doster, Dominique L.; Jensen, Amanda R.; Khaneki, Sina; Markel, Troy A.; Surgery, School of MedicineIntestinal ischemia is a devastating intraabdominal emergency that often necessitates surgical intervention. Mortality rates can be high, and patients who survive often have significant long-term morbidity. The implementation of traditional medical therapies to prevent or treat intestinal ischemia have been sparse over the last decade, and therefore, the use of novel therapies are becoming more prevalent. Cellular therapy using mesenchymal stromal cells is one such treatment modality that is attracting noteworthy attention in the scientific community. Several groups have seen benefit with cellular therapy, but the optimal cell line has not been identified. The purpose of this review is to: 1) Review the mechanism of intestinal ischemia and reperfusion injury, 2) Identify the mechanisms of how cellular therapy may be therapeutic for this disease, and 3) Compare various MSC tissue sources to maximize potential therapeutic efficacy in the treatment of intestinal I/R diseases.