- Browse by Subject
Browsing by Subject "native mass spectrometry"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Experimental Determination of Activation Energies for Covalent Bond Formation via Ion/Ion Reactions and Competing Processes(ACS, 2021) Cheung See Kit, Melanie; Shepherd, Samantha O.; Prell, James S.; Webb, Ian K.; Chemistry and Chemical Biology, School of ScienceThe combination of ion/ion chemistry with commercially available ion mobility/mass spectrometry systems has allowed rich structural information to be obtained for gaseous protein ions. Recently, the simple modification of such an instrument with an electrospray reagent source has allowed three-dimensional gas-phase interrogation of protein structures through covalent and noncovalent interactions coupled with collision cross section measurements. However, the energetics of these processes have not yet been studied quantitatively. In this work, previously developed Monte Carlo simulations of ion temperatures inside traveling wave ion guides are used to characterize the energetics of the transition state of activated ubiquitin cation/sulfo-benzoyl-HOAt reagent anion long-lived complexes formed via ion/ion reactions. The ΔH‡ and ΔS‡ of major processes observed from collisional activation of long-lived gas-phase ion/ion complexes, namely collision induced unfolding (CIU), covalent bond formation, or neutral loss of the anionic reagent via intramolecular proton transfer, were determined. Covalent bond formation via ion/ion complexes was found to be significantly lower energy compared to unfolding and bond cleavage. The ΔG‡ values of activation of all three processes lie between 55 and 75 kJ/mol, easily accessible with moderate collisional activation. Bond formation is favored over reagent loss at lower activation energies, whereas reagent loss becomes competitive at higher collision energies. Though the ΔG‡ values between CIU of a precursor ion and covalent bond formation of its ion/ion product complex are comparable, our data suggest covalent bond formation does not require extensive isomerization.Item Gas-Phase Ion/Ion Chemistry for Structurally Sensitive Probes of Gaseous Protein Ion Structure: Electrostatic and Electrostatic to Covalent Cross-Linking(Elsevier, 2021-05) Kit, Melanie Cheung See; Carvalho, Veronica V.; Vilseck, Jonah Z.; Webb, Ian K.; Chemistry and Chemical Biology, School of ScienceIntramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.Item Ion Mobility and Gas-Phase Covalent Labeling Study of the Structure and Reactivity of Gaseous Ubiquitin Ions Electrosprayed from Aqueous and Denaturing Solutions(ACS, 2020-05) Carvalho, Veronica V.; Cheung See Kit, Melanie; Chemistry and Chemical Biology, School of ScienceGas-phase ion/ion chemistry was coupled to ion mobility/mass spectrometry analysis to correlate the structure of gaseous ubiquitin to its solution structures with selective covalent structural probes. Collision cross section (CCS) distributions were measured to ensure the ubiquitin ions were not unfolded when they were introduced to the gas phase. Aqueous solutions stabilizing the native state of ubiquitin yielded folded ubiquitin structures with CCS values consistent with previously published literature. Denaturing solutions favored several families of unfolded conformations for most of the charge states evaluated. Gas-phase covalent labeling via ion/ion reactions was followed by collision-induced dissociation of the intact, labeled protein to determine which residues were labeled. Ubiquitin 5+ and 6+ electrosprayed from aqueous conditions were covalently modified preferentially at the lysine 29 and arginine 54 positions, indicating that elements of three-dimensional structure were maintained in the gas phase. On the other hand, most ubiquitin ions produced in denaturing conditions were labeled at various other lysine residues, likely due to the availability of additional sites following methanol- and low-pH-induced unfolding. These data support the conservation of ubiquitin structural elements in the gas phase. The research presented here provides the basis for residue-specific characterization of biomolecules in the gas phase.Item Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: Cytochrome C from neutral and acidic solutions(Springer, 2023-02) Cain, Rebecca L.; Webb, Ian K.; Chemistry and Chemical Biology, School of ScienceElectrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under “gentle” (i.e., low energy) ion transmission conditions with structures measured under “harsh” (i.e., higher energy) transmission. This work confirms that when using “gentle” instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, “harsh” conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.Item Recent Technological Developments for Native Mass Spectrometry(Elsevier, 2022-01) Webb, Ian K.; Chemistry and Chemical Biology, School of ScienceNative mass spectrometry (MS), the analysis of proteins and protein complexes from solutions that stabilize native solution structures, is a rapidly expanding area. There is strong evidence supporting the retention of proteins' native folds in the absence of solvent under the experimental timescales of MS experiments. Therefore, instrumentation has been developed to use gas-phase native-like protein ions to exploit the speed, sensitivity, and selectivity of mass spectrometry approaches to solve emerging problems in structural biology. This article reviews some of the recent advances and applications in gas-phase instrumentation for structural proteomics.